Elastic Load Balance

User Guide

Issue 16

Date 2023-11-30

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

HUAWEI and other Huawei trademarks are the property of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei Cloud and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, quarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Contents

1 Service Overview	1
1.1 What Is ELB?	1
1.2 Product Advantages	3
1.3 How ELB Works	ε
1.4 Application Scenarios	11
1.5 Differences Between Dedicated and Shared Load Balancers	14
1.6 Load Balancing on a Public or Private Network	25
1.7 Network Traffic Paths	27
1.8 Specifications of Dedicated Load Balancers	29
1.9 Quotas and Constraints	32
1.10 Billing (Shared Load Balancers)	35
1.11 Billing (Dedicated Load Balancers)	35
1.12 Permissions	37
1.13 Product Concepts	40
1.13.1 Basic Concepts	40
1.13.2 Region and AZ	42
1.14 How ELB Works with Other Services	42
2 Getting Started	44
2.1 Overview	44
2.2 Process Flowchart	46
2.3 Using Shared Load Balancers (Entry Level)	48
2.4 Using Shared Load Balancers (Advanced Level)	55
3 Load Balancer	64
3.1 Overview	64
3.2 Preparations for Creating a Load Balancer	66
3.3 Creating a Dedicated Load Balancer	69
3.4 Creating a Shared Load Balancer	
3.5 Configuring Deletion Protection for Load Balancers	80
3.6 Modifying the Bandwidth	80
3.7 Changing the Specifications of a Dedicated Load Balancer	81
3.8 Changing an IP Address	83
3.9 Binding an IP Address to or Unbinding an IP Address from a Load Balancer	83

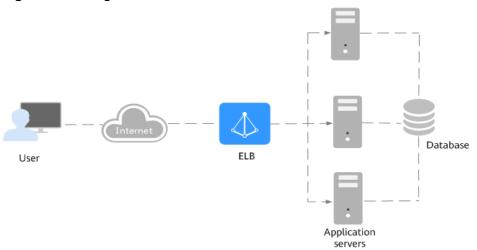
3.10 Adding to or Removing from an IPv6 Shared Bandwidth	86
3.11 Exporting the Load Balancer List	
3.12 Deleting a Load Balancer	
4 Listener	89
4.1 Overview	89
4.2 Protocols and Ports	90
4.3 Adding a TCP Listener	92
4.4 Adding a UDP Listener	104
4.5 Adding an HTTP Listener	115
4.6 Adding an HTTPS Listener	131
4.7 Adding a UDP Listener (with a QUIC Backend Server Group Associated)	150
4.8 Configuring Timeout Durations	151
4.9 Modifying or Deleting a Listener	154
4.10 Transfer Client IP Address	155
5 Advanced Features of HTTP/HTTPS Listeners	157
5.1 Forwarding Policy (Shared Load Balancers)	157
5.2 Forwarding Policy (Dedicated Load Balancers)	162
5.3 Advanced Forwarding (Dedicated Load Balancers)	165
5.3.1 Advanced Forwarding	165
5.3.2 Managing an Advanced Forwarding Policy	173
5.4 Mutual Authentication	175
5.5 HTTP/2	182
5.6 HTTP Redirection to HTTPS	183
5.7 Rewriting the X-Forwarded-Host Field	185
5.8 SNI Certificate	186
6 Backend Server Group	188
6.1 Overview	188
6.2 Key Features	190
6.2.1 Health Check	190
6.2.2 Load Balancing Algorithms	196
6.2.3 Sticky Session	202
6.2.4 Slow Start (Dedicated Load Balancers)	204
6.3 Creating a Backend Server Group (Dedicated Load Balancers)	205
6.4 Creating a Backend Server Group (Shared Load Balancers)	211
6.5 Modifying a Backend Server Group	216
6.5.1 Overview	216
6.5.2 Modifying Health Check Settings	217
6.5.3 Changing the Load Balancing Algorithm	220
6.5.4 Modifying Sticky Session Settings	
6.5.5 Modifying Slow Start Settings (Dedicated Load Balancers)	221
6.6 Changing a Backend Server Group	

6.7 Viewing a Backend Server Group	223
6.8 Deleting a Backend Server Group	
7 Backend Server (Dedicated Load Balancers)	225
7.1 Overview	
7.2 Security Group Rules	226
7.3 Managing Backend Servers	229
7.3.1 Adding Backend Servers	229
7.3.2 Viewing Backend Servers	230
7.3.3 Removing Backend Servers	230
7.3.4 Changing Backend Server Weights	231
7.4 IP Addresses as Backend Servers	232
7.4.1 Overview	232
7.4.2 Enabling IP as a Backend	233
7.4.3 Adding IP Addresses as Backend Servers	234
7.4.4 Viewing Backend Servers	235
7.4.5 Removing Backend Servers	235
7.4.6 Changing Backend Server Weights	236
8 Backend Server (Shared Load Balancers)	238
8.1 Overview	238
8.2 Security Group Rules	239
8.3 Managing Backend Servers	242
8.3.1 Adding Backend Servers	242
8.3.2 Viewing Backend Servers	243
8.3.3 Removing Backend Servers	243
8.3.4 Changing Backend Server Weights	244
9 Certificate	246
9.1 Introduction to Certificates	246
9.2 Certificate and Private Key Format	247
9.3 Converting Certificate Formats	248
9.4 Adding, Modifying, or Deleting a Certificate	249
9.5 Replacing the Certificate Bound to a Listener	251
9.6 Replacing the Certificate Bound to Different Listeners	252
9.7 Querying Listeners by Certificate	252
10 Access Control	254
10.1 Access Control	254
10.2 Managing IP Address Groups	256
10.2.1 Creating an IP Address Group	257
10.2.2 Viewing the Details of an IP Address Group	258
10.2.3 Managing IP Addresses in an IP Address Group	259
10.2.4 Deleting an IP Address Group	261
11 TLS Security Policy	262

12 Tag	273
13 Access Logging	275
14 Monitoring	286
14.1 Monitoring Metrics	
14.2 Setting an Alarm Rule	
14.2.1 Creating an Alarm Rule	
14.2.2 Modifying an Alarm Rule	298
14.3 Viewing Metrics	298
15 Auditing	300
15.1 Key Operations Recorded by CTS	300
15.2 Viewing Traces	301
16 Load Balancer Migration	304
16.1 Migrating from Classic Load Balancers to Shared Load Balancers	
17 Permissions Management	312
17.1 Creating a User and Granting Permissions	
17.2 Creating a Custom Policy	
18 Quotas	316
19 FAQ	
19.1 Popular Questions	
19.2 Why Can't I Access My Backend Servers Through a Load Balancer?	
19.3 What Can I Do If ELB Can't Be Accessed or Traffic Routing is Interrupted?	
19.4 How Can I Handle Error Codes?	
19.5 Can ELB Be Used Separately?	
19.6 Does ELB Support Persistent Connections?	325
19.7 Does ELB Support FTP on Backend Servers?	325
19.8 Is an EIP Assigned Exclusively to a Load Balancer?	325
19.9 How Many Load Balancers and Listeners Can I Have?	325
19.10 What Types of APIs Does ELB Provide? What Are Permissions of ELB?	325
19.11 Can I Adjust the Number of Backend Servers When a Load Balancer is Running?	328
19.12 Can Backend Servers Run Different OSs?	328
19.13 Can I Configure Different Backend Ports for a Load Balancer?	328
19.14 Can ELB Be Used Across Accounts or VPCs?	328
19.15 Can Backend Servers Access the Ports of a Load Balancer?	328
19.16 Can Both the Listener and Backend Server Group Use HTTPS?	329
19.17 Can I Change the VPC and Subnet for My Load Balancer?	329
19.18 Can I Upgrade a Shared Load Balancer to a Dedicated Load Balancer Without Interrupt Routing?	
19.19 Does ELB Support IPv6 Networks?	
19.20 How Do I Check for Traffic Inconsistencies?	
19.21 How Do I Check If Traffic Is Being Evenly Distributed?	

19.22 How Do I Check If There Is Excessive Access Delay?	331
19.23 What Do I Do If a Load Balancer Fails a Stress Test?	331
19.24 Load Balancers	. 331
19.24.1 How Does ELB Distribute Traffic?	332
19.24.2 How Can I Access a Load Balancer Across VPCs?	332
19.24.3 How Can I Configure Load Balancing for Containerized Applications?	332
19.24.4 Why Can't I Delete My Load Balancer?	333
19.24.5 Do I Need to Configure EIP Bandwidth for My Load Balancers?	333
19.24.6 Can I Bind Multiple EIPs to a Load Balancer?	333
19.24.7 Why Multiple IP Addresses Are Required When I Create or Enable a Dedicated Load Balancer?	?.333
19.24.8 Why Are Requests from the Same IP Address Routed to Different Backend Servers When the l Balancing Algorithm Is Source IP Hash?	
19.24.9 Can Backend Servers Access the Internet Using the EIP of the Load Balancer?	334
19.24.10 Do Shared Load Balancers Have Specifications?	334
19.24.11 Will Traffic Routing Be Interrupted If the Load Balancing Algorithm Is Changed?	334
19.24.12 What Is the Difference Between the Bandwidth Included in Each Specification of a Dedicated Load Balancer and the Bandwidth of an EIP?	
19.24.13 How Do I Combine ELB and WAF?	334
19.25 Listeners	335
19.25.1 What Are the Relationships Between Load Balancing Algorithms and Sticky Session Types?	335
19.25.2 Can I Bind Multiple Certificates to a Listener?	336
19.25.3 What HTTP Headers Can I Configure for an HTTP and HTTP Listener?	336
19.25.4 Will ELB Stop Distributing Traffic Immediately After a Listener Is Deleted?	337
19.25.5 Does ELB Have Restrictions on the File Upload Speed and Size?	337
19.25.6 Can Multiple Load Balancers Route Requests to One Backend Server?	337
19.25.7 How Is WebSocket Used?	337
19.25.8 Why Can't I Select the Target Backend Server Group When Adding or Modifying a Listener?	337
19.25.9 Why Cannot I Add a Listener to a Dedicated Load Balancer?	338
19.26 Backend Servers	338
19.26.1 Why Is the Interval at Which Backend Servers Receive Health Check Packets Different from W Have Configured?	
19.26.2 Can Backend Servers Access the Internet After They Are Associated with a Load Balancer?	339
19.26.3 Why Are Backend Servers Frequently Accessed by IP Addresses in 100.125.0.0/16?	339
19.26.4 Can ELB Route Traffic Across Regions?	339
19.26.5 Does Each Backend Server Need an EIP to Receive Requests from a Public Network Load Balancer?	339
19.26.6 How Do I Check the Network Conditions of a Backend Server?	339
19.26.7 How Can I Check the Network Configuration of a Backend Server?	340
19.26.8 How Do I Check the Status of a Backend Server?	340
19.26.9 When Is a Backend Server Considered Healthy?	341
19.26.10 How Do I Check Whether a Backend Server Can Be Accessed Through an EIP?	341
19.26.11 Why Is the Number of Active Connections Monitored by Cloud Eye Different from the Number Connections Established with the Backend Servers?	
19.26.12 Why Can I Access Backend Servers After a Whitelist Is Configured?	

19.26.13 When Will Modified Weights Take Effect?	342
19.26.14 Why Must the Subnet Where the Load Balancer Resides Have at Least 16 Available IP Address for Enabling IP as a Backend?	esses 343
19.27 Health Checks	343
19.27.1 How Do I Troubleshoot an Unhealthy Backend Server?	343
19.27.2 Why Is the Interval at Which Backend Servers Receive Health Check Packets Different from t Configured Interval?	
19.27.3 How Does ELB Perform UDP Health Checks? What Are the Precautions for UDP Health Check	
19.27.4 Why Does ELB Frequently Send Requests to Backend Servers During Health Checks?	355
19.27.5 When Does a Health Check Start?	356
19.27.6 Do Maximum Retries Include Health Checks That Consider Backend Servers Unhealthy?	356
19.27.7 What Do I Do If a Lot of Access Logs Are Generated During Health Checks?	356
19.27.8 What Status Codes Will Be Returned If Backend Servers Are Identified as Healthy?	356
19.28 Obtaining Source IP Addresses	356
19.28.1 How Can I Transfer the IP Address of a Client?	357
19.29 HTTP/HTTPS Listeners	366
19.29.1 Which Protocol Should I Select for the Backend Server Group When Adding an HTTPS Listene	
19.29.2 Why Is There a Security Warning After a Certificate Is Configured?	366
19.29.3 Why Is a Forwarding Policy in the Faulty State?	
19.29.4 Why Can't I Add a Forwarding Policy to a Listener?	367
19.29.5 Why Cannot I Select an Existing Backend Server Group When Adding a Forwarding Policy?	367
19.30 Sticky Sessions	367
19.30.1 What Are the Differences Between Persistent Connections and Sticky Sessions?	367
19.30.2 How Do I Check If Sticky Sessions Failed to Take Effect?	367
19.30.3 How Do I Test Sticky Sessions Using Linux Curl Commands?	367
19.30.4 What Types of Sticky Sessions Does ELB Support?	370
19.31 Certificates	370
19.31.1 How Can I Create Server Certificates and CA Certificates?	370
19.31.2 Does ELB Support Wildcard Certificates?	370
19.31.3 Why Is Access to Backend Servers Still Abnormal Even If I Have Created a Certificate?	370
19.31.4 Will the Network or Load Balancing Be Interrupted When a Certificate Is Being Replaced?	371
19.32 Monitoring	371
19.32.1 Why Is the Outgoing Rate on the ELB Console Inconsistent with the Bandwidth Usage Statist on the Cloud Eye Console?	
19.32.2 What Are the Differences Between Layer-7 Status Codes and Backend Status Codes in ELB	
Metrics?	371
20 Change History	. 373


1 Service Overview

1.1 What Is ELB?

Elastic Load Balance (ELB) automatically distributes incoming traffic across multiple backend servers based on the listening rules you configure. ELB expands the service capabilities of your applications and improves their availability by eliminating single points of failure (SPOFs).

As shown in the example in the following figure, ELB distributes incoming traffic to three application servers, and each server processes one third of the requests. ELB also provides health checks, which can detect unhealthy servers. Traffic is distributed only to servers that are running normally, improving the availability of applications.

Figure 1-1 Using a load balancer

ELB Components

ELB consists of the following components:

• **Load balancer**: distributes incoming traffic across backend servers in one or more availability zones (AZs).

- **Listener**: uses the protocol and port you specify to check for requests from clients and route the requests to associated backend servers based on the listening rules and forwarding policies you configure. You can add one or more listeners to a load balancer.
- **Backend server group**: contains one or more backend servers to receive requests routed by the listener. You need to add at least one backend server to a backend server group.

You can set a weight for each backend server based on their performance.

You can also configure health checks for a backend server group to check the health of each backend server. When a backend server is unhealthy, the load balancer stops routing new requests to this server.

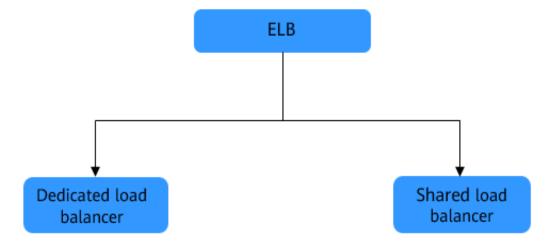

Listener Listener Forwarding Forwarding Forwarding HTTPS Port: 443 HTTP policy policy Port: 80 Port: 81 Backend Backend Backend Protocol: HTTP Health Protocol: TCP aroup group group

Figure 1-2 ELB components

Load Balancer Types

ELB provides shared load balancers and dedicated load balancers.

Figure 1-3 Load balancer types

- Dedicated load balancers have exclusive use of underlying resources, so that
 the performance of a dedicated load balancer is not affected by other load
 balancers. In addition, there are a wide range of specifications available for
 selection.
- Shared load balancers are deployed in clusters and share underlying resources, so their performance may be affected by other load balancers. Shared load balancers were previously named enhanced load balancers...

For details about the differences between dedicated and shared load balancers, see Differences Between Dedicated and Shared Load Balancers.

Accessing ELB

You can use either of the following methods to access ELB:

- Management console
 Log in to the management console and choose Elastic Load Balance (ELB).
- APIs

You can call APIs to access ELB. For details, see the *Elastic Load Balance API Reference*.

□ NOTE

Dedicated load balancers can be accessed only from the management console for

1.2 Product Advantages

Advantages of Dedicated Load Balancers

Robust performance

Each load balancer has exclusive access to isolated resources, allowing your services to handle a massive number of requests. A single load balancer deployed in one AZ can handle up to 20 million concurrent connections.

If you deploy a load balancer in multiple AZs, its performance such as the number of new connections and the number of concurrent connections will multiply. For example, if you deploy a dedicated load balancer in two AZs, it can handle up to 40 million concurrent connections.

○ NOTE

- If requests are from the Internet, the load balancer in each AZ you select routes the requests based on source IP addresses. If you deploy a load balancer in two AZs, the requests the load balancers can handle will be doubled.
- For requests from a private network:
 - If clients are in the AZ you selected when you created the load balancer, requests are distributed by the load balancer in this AZ. If the load balancer is unavailable, requests are distributed by the load balancer in another AZ you select.

If the load balancer is available but the connections that the load balancer needs to handle exceed the amount defined in the specifications, service may be interrupted. To address this issue, you need upgrade specifications. You can monitor traffic usage on private network by AZ.

- If clients are in an AZ that is not selected when you create the load balancer, requests are distributed by the load balancer in each AZ you select based on source IP addresses.
- If clients are in a VPC that is different from where the load balancer works, the load balancer in the AZ where the original VPC subnet resides routes the requests.
 If the load balancer in this AZ is unavailable, requests are distributed by the load balancer in another AZ.

High availability

ELB can route traffic uninterruptedly. If your servers in one AZ are unhealthy, it automatically routes traffic to healthy servers in other AZs. ELB provides a comprehensive health check system to ensure that incoming traffic is routed only to healthy backend servers, improving the availability of your applications.

Ultra-high security

ELB supports TLS 1.3 and can route HTTPS requests to backend servers. You can select security policies or customize security policies that fit your security requirements.

Multiple protocols

ELB supports Quick UDP Internet Connection (QUIC), TCP, UDP, HTTP, and HTTPS, so that they can route requests to different types of applications.

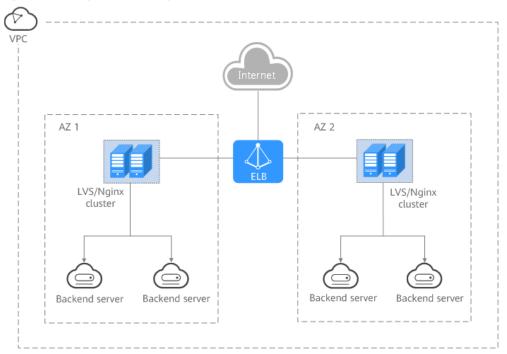
High flexibility

ELB can route requests based on their content, such as the request method, header, URL, path, and source IP address. They can also redirect requests to another listener or URL, or return a fixed response to the clients.

No limits

ELB can route requests to both servers on the cloud and on premises, allowing you to leverage cloud resources to handle burst traffic.

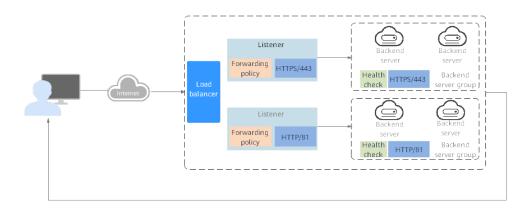
Ease-of-use


ELB provides a diverse set of algorithms that allow you to configure different traffic routing policies to meet your requirements while keeping deployments simple.

Advantages of Shared Load Balancers

High availability

Shared load balancers can route traffic across AZs, ensuring that your services are uninterrupted. If servers in an AZ are unhealthy, ELB automatically routes traffic to healthy servers in other AZs. Shared load balancers provide a comprehensive health check mechanism to ensure that incoming traffic is routed to only healthy backend servers, improving the availability of your applications.


Figure 1-4 High availability

- Multiple protocols
 - ELB supports TCP, UDP, HTTP, and HTTPS protocols to route requests to different types of applications.
- Ease-of-use
 - ELB provides a diverse set of algorithms that allow you to configure different traffic routing policies to meet your requirements while keeping deployments simple.
- High reliability
 Load balancers are deployed in two AZs and can distribute traffic more evenly.

1.3 How ELB Works

Figure 1-5 How ELB works

The following describes how ELB works:

- 1. A client sends a request to your application.
- 2. The listeners added to your load balancer use the protocols and ports you have configured to receive the request.
- 3. The listener forwards the request to the associated backend server group based on your configuration. If you have configured a forwarding policy for the listener, the listener evaluates the request based on the forwarding policy. If the request matches the forwarding policy, the listener forwards the request to the backend server group configured for the forwarding policy.
- 4. Healthy backend servers in the backend server group receive the request based on the load balancing algorithm and the routing rules you specify in the forwarding policy, handle the request, and return a result to the client.

How requests are routed depends on the **load balancing algorithms** configured for each backend server group. If the listener uses HTTP or HTTPS, how requests are routed also depends on the forwarding policies configured for the listener.

Load Balancing Algorithms

Dedicated load balancers support four load balancing algorithms: weighted round robin, weighted least connections, source IP hash, and connection ID. Shared load balancers support three load balancing algorithms: weighted round robin, weighted least connections, and source IP hash.

 Weighted round robin: Requests are routed to backend servers using the round robin algorithm. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests. This algorithm is often used for short connections, such as HTTP connections.

The following figure shows an example of how requests are distributed using the weighted round robin algorithm. Two backend servers are in the same AZ

and have the same weight, and each server receives the same proportion of requests.

Backend server 01

Backend server 02

Figure 1-6 Traffic distribution using the weighted round robin algorithm

• Weighted least connections: In addition to the weight assigned to each server, the number of connections being processed by each backend server is also considered. Requests are routed to the server with the lowest connections-to-weight ratio. In addition to the number of connections, each server is assigned a weight based on its capacity. Requests are routed to the server with the lowest connections-to-weight ratio. This algorithm is often used for persistent connections, such as connections to a database.

The following figure shows an example of how requests are distributed using the weighted least connections algorithm. Two backend servers are in the same AZ and have the same weight, 100 connections have been established with backend server 01, and 50 connections have been connected with backend server 02. New requests are preferentially routed to backend server 02.

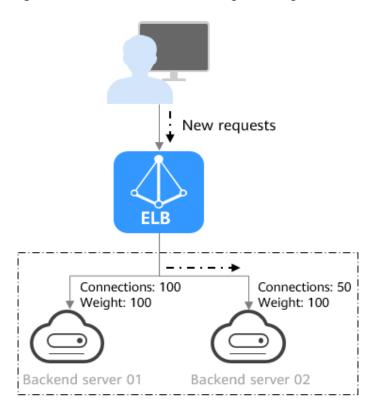


Figure 1-7 Traffic distribution using the weighted least connections algorithm

Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hashing key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously. This algorithm works well for TCP connections of load balancers that do not use cookies.

The following figure shows an example of how requests are distributed using the source IP hash algorithm. Two backend servers are in the same AZ and have the same weight. If backend server 01 has processed a request from IP address A, the load balancer will route new requests from IP address A to backend server 01.

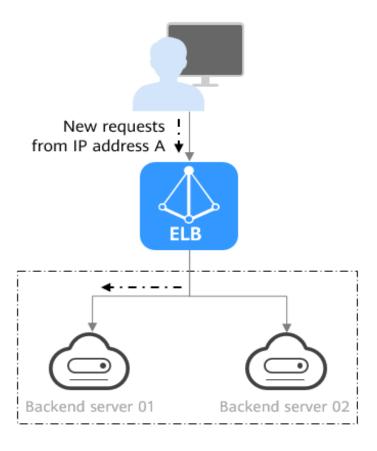


Figure 1-8 Traffic distribution using the source IP hash algorithm

• Connection ID: The connection ID in the packet is calculated using the consistent hash algorithm to obtain a specific value, and backend servers are numbered. The generated value determines to which backend server the requests are routed. This allows requests with different connection IDs to be routed to different backend servers and ensures that requests with the same connection ID are routed to the same backend server. This algorithm applies to QUIC requests.

Ⅲ NOTE

Currently, only dedicated load balancers support the Connection ID algorithm.

Figure 1-9 shows an example of how requests are distributed using the connection ID algorithm. Two backend servers are in the same AZ and have the same weight. If backend server 01 has processed a request from client A, the load balancer will route new requests from client A to backend server 01.

Figure 1-9 Traffic distribution using the connection ID algorithm

Factors Affecting Load Balancing

In addition to the load balancing algorithm, factors that affect load balancing generally include connection type, session stickiness, and server weights.

Assume that there are two backend servers with the same weight (not zero), the weighted least connections algorithm is selected, sticky sessions are not enabled, and 100 connections have been established with backend server 01, and 50 connections with backend server 02.

When client A wants to access backend server 01, the load balancer establishes a persistent connection with backend server 01 and continuously routes requests from client A to backend server 01 before the persistent connection is disconnected. When other clients access backend servers, the load balancer routes the requests to backend server 02 using the weighted least connects algorithm.

Ⅲ NOTE

If backend servers are declared unhealthy or their weights are set to 0, the load balancer will not route any request to the backend servers.

For details about the load balancing algorithms, see Load Balancing Algorithms.

If requests are not evenly routed, troubleshoot the issue by performing the operations described in **How Do I Check If Traffic Is Being Evenly Distributed?**

1.4 Application Scenarios

Heavy-Traffic Applications

For an application with heavy traffic, such as a large portal or mobile app store, ELB evenly distributes incoming traffic across backend servers, balancing the load while ensuring steady performance.

Sticky sessions ensure that requests from one client are always forwarded to the same backend server for fast processing.

IP address A (Request A)

IP address A (Request B)

Backend server

Backend server

Figure 1-10 Session stickiness

Applications with Predictable Peaks and Troughs in Traffic

For an application that has predictable peaks and troughs in traffic volumes, ELB works with Auto Scaling to automatically add servers during promotions when there are sudden traffic spikes, and then remove them when traffic returns to normal. This helps you improve resource availability and reduce IT costs.

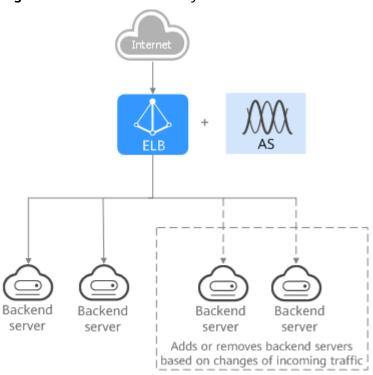


Figure 1-11 Flexible scalability

Zero SPOFs

ELB routinely performs health checks on backend servers to monitor their health. If any backend server is detected unhealthy, ELB will not route requests to this server until it recovers.

This makes ELB a good choice for running services that require high reliability, such as websites and toll collection systems.

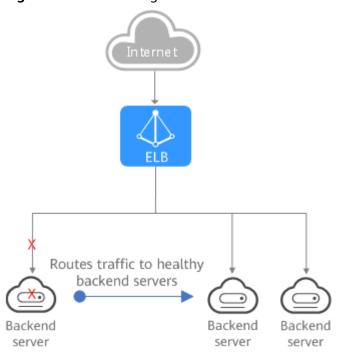


Figure 1-12 Eliminating SPOFs

Cross-AZ Load Balancing

ELB can distribute traffic across AZs. When an AZ becomes faulty, ELB distributes traffic across backend servers in other AZs.

ELB is ideal for banking, policing, and large application systems that require high availability.

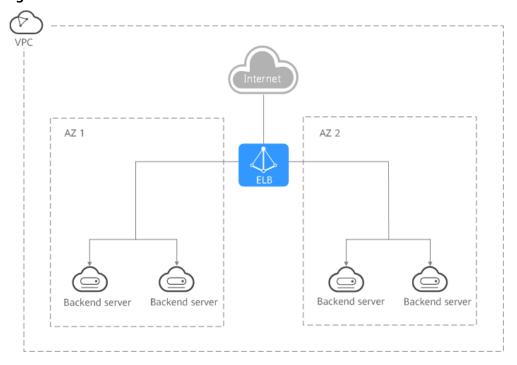


Figure 1-13 Traffic distribution to servers in one or more AZs

1.5 Differences Between Dedicated and Shared Load Balancers

Each type of load balancer has their advantages.

Feature Comparison

Dedicated load balancers provide more powerful forwarding performance, while shared load balancers are less expensive. You can select the appropriate load balancer based on your application needs. The following tables compare the features supported by the two types of load balancers. (\checkmark indicates that an item is supported, and x indicates that an item is not supported.)

Table 1-1 Performance

Item	Dedicated Load Balancers	Shared Load Balancers
Deploym ent mode	Their performance is not affected by other load balancers. You can select different specifications based on your requirements.	Shared load balancers are deployed in clusters, and all the load balancers share underlying resources, so that the performance of a load balancer is affected by other load balancers.

Item	Dedicated Load Balancers	Shared Load Balancers
Concurre nt connecti ons	A dedicated load balancer in an AZ can establish up to 20 million concurrent connections . If you deploy a dedicated load balancer in two AZs, the number of concurrent connections will be doubled.	-
	For example, if you deploy a dedicated load balancer in two AZs, it can handle up to 40 million concurrent connections.	
	NOTE	
	 If requests are from the Internet, the load balancer in each AZ you select routes the requests based on source IP addresses. If you deploy a load balancer in two AZs, the requests the load balancers can handle will be doubled. 	
	For requests from a private network:	
	If clients are in the AZ you selected when you created the load balancer, requests are distributed by the load balancer in this AZ. If the load balancer is unavailable, requests are distributed by the load balancer in another AZ you select. If the load balancer is available but the connections that the load balancer needs to handle exceed the amount defined in the specifications, service may be interrupted. To address this issue, you need upgrade specifications. You can monitor traffic usage on private network by AZ.	
	 If clients are in an AZ that is not selected when you create the load balancer, requests are distributed by the load balancer in each AZ you select based on source IP addresses. 	
	If clients are in a VPC that is different from where the load balancer works, the load balancer in the AZ where the original VPC subnet resides routes the requests. If the load balancer in this AZ is unavailable, requests are distributed by the load balancer in another AZ.	

Table 1-2 Supported protocols

Protocol	Description	Dedicated Load Balancers	Shared Load Balancers
QUIC	If you use UDP as the frontend protocol, you can select QUIC as the backend protocol, and select the connection ID algorithm to route requests with the same connection ID to the same backend server. QUIC has the advantages of low latency, high reliability, and no head-of-line blocking (HOL blocking), and is very suitable for the mobile Internet. No new connections need to be established when you switch between a Wi-Fi network and a mobile network.	√	X
HTTP/2	Hypertext Transfer Protocol 2.0 (HTTP/2) is a new version of the HTTP protocol. HTTP/2 is compatible with HTTP/1.X and provides improved performance and security. Only HTTPS listeners support this feature.	√	✓
TCP/UDP (Layer 4)	After receiving TCP or UDP requests from the clients, the load balancer directly routes the requests to backend servers. Load balancing at Layer 4 features high routing efficiency.	√	✓
HTTP/HTTPS (Layer 7)	After receiving a request, the listener needs to identify the request and forward data based on the fields in the HTTP/HTTPS packet header. Though the routing efficiency is lower than that at Layer 4, load balancing at Layer 7 provides some advanced features such as encrypted transmission and cookie-based sticky sessions.	✓	√
WebSocket	WebSocket is a new HTML5 protocol that provides full-duplex communication between the browser and the server. WebSocket saves server resources and bandwidth, and enables real-time communication.	√	✓

Table 1-3 Supported backend types

Backend Server Type	Description	Dedicated Load Balancers	Shared Load Balancers
IP as backend servers	You can add servers in a VPC connected using a VPC peering connection, in a VPC connected through a cloud connection, or in an on-premises data center at the other end of a Direct Connect or VPN connection, by using the server IP addresses. In this way, incoming traffic can be flexibly distributed to cloud servers and on-premises servers for hybrid load balancing.	√	x
ECS	You can use load balancers to distribute incoming traffic across ECSs.	√	√

Table 1-4 Advanced forwarding (HTTP/HTTPS listeners)

Co mp one nt	Condition	Description	Dedicate d Load Balancers	Shared Load Balancer s
For war ding rule	Domain name	Load balancers can route requests based on domain names. The domain name in the request must exactly match that in the forwarding policy.	√	√
	URL	Load balancers can route requests based on URLs. There are three URL matching rules: exact match, prefix match, and regular expression match.	√	√
	HTTP request method	You can route requests based on any HTTP method. The options include GET, POST, PUT, DELETE, PATCH, HEAD and OPTIONS.	√	х

Co mp one nt	Condition	Description	Dedicate d Load Balancers	Shared Load Balancer s
	HTTP header	You can route requests based on the value of any HTTP header. An HTTP header consists of a key and one or more values. You need to configure the key and values separately.	√	х
	Query string	You can route requests based on the query string.	√	x
	CIDR block (source IP addresses)	You can route requests based on source IP addresses from where the requests originate.	√	X
Acti on	Forward to a backend server group	Requests are forwarded to the specified backend server group for processing.	√	√
	Redirect to another listener	Requests are redirected to another listener, which then routes the requests to its associated backend server group.	✓	х
	Redirect to another URL	Requests are redirected to the configured URL. When clients access website A, the load balancer returns 302 or any other 3xx status code and automatically redirects the clients to website B. You can custom the redirection URL that will be returned to the clients.	√	х
	Return a specific response body	Load balancers return a fixed response to the clients. You can custom the status code and response body that load balancers directly return to the clients without the need to route the requests to backend servers.	√	х

Table 1-5 Advanced features

Feature	Description	Dedicated Load Balancers	Shared Load Balancers
Multiple specifications	Load balancers allow you to select appropriate specifications based on your requirements.	√	х
HTTPS support	Load balancers can receive HTTPS requests from clients and route them to an HTTPS backend server group.	√	X
IPv6 addresses	Load balancers can route requests from IPv6 clients. You can change the IPv6 address bound to a load balancer and unbind the IPv6 address from the load balancer.	✓	х
Changing the private IPv4 address bound to the load balancer	You can change the private IPv4 address bound to a load balancer.	√	х
Slow start	You can enable slow start for HTTP or HTTPS listeners. After you enable it, the load balancer linearly increases the proportion of requests to send to backend servers in this mode. Slow start gives applications time to warm up and respond to requests with optimal performance.	✓	x
Mutual authenticatio n	In this case, you need to deploy both the server certificate and client certificate. Mutual authentication is supported	√	√
	only by HTTPS listeners.		

Feature	Description	Dedicated Load Balancers	Shared Load Balancers
Custom timeout durations	You can configure and modify timeout durations (idle timeout, request timeout, and response timeout) for your listeners to meet varied demands. For example, if the size of a request from an HTTP or HTTPS client is large, you can increase the request timeout duration to ensure that the request can be successfully routed. • Dedicated load balancers: You can change the timeout durations of TCP, UDP, HTTP, and HTTPS listeners. • Shared load balancers: You can only change the timeout durations of TCP, HTTP, and HTTPS listeners, but cannot change the timeout durations of UDP listeners.	✓	
Security policies	When you add HTTPS listeners, you can select appropriate security policies to improve service security. A security policy is a combination of TLS protocols and cipher suites.	√	√
Passing the listener's port number to backend servers	The listener's port number is stored in the X-Forwarded-Port header and passed to backend servers.	✓	√
Passing the client's port number to backend servers	The client's port number is stored in the X-Forwarded-For-Port header and passed to backend servers.	√	√
Rewriting X- Forwarded- Host	 If you disable this option, the load balancer passes the X-Forwarded-Host field to backend servers. If you enable this option, the load balancer rewrites the X-Forwarded-Host field based on the Host field in the request header sent from the client and sends the rewritten X-Forwarded-Host field to backend servers. 	✓	√

Table 1-6 Other features

Feature	Description	Dedicated Load Balancers	Shared Load Balance rs
Customized cross-AZ deployment	You can create a load balancer in multiple AZs. Each AZ selects an optimal path to process requests. In addition, the AZs back up each other, improving service processing efficiency and reliability.	✓	х
	If you deploy a load balancer in multiple AZs, its performance such as the number of new connections and the number of concurrent connections will multiply. For example, if you deploy a dedicated load balancer in two AZs, it can handle up to 40 million concurrent connections.		

Feature	Description	Dedicated Load Balancers	Shared Load Balance rs
	 NOTE If requests are from the Internet, the load balancer in each AZ you select routes the requests based on source IP addresses. If you deploy a load balancer in two AZs, the requests the load balancers can handle will be doubled. For requests from a private network: If clients are in the AZ you selected when you created the load balancer, requests are distributed by the load balancer in this AZ. If the load balancer is unavailable, requests are distributed by the load balancer in another AZ you select. If the load balancer is available but the connections that the load balancer needs to handle exceed the amount defined in the specifications, service may be interrupted. To address this issue, you need upgrade specifications. You can monitor traffic usage on private network by AZ. If clients are in an AZ that is not selected when you create the load balancer, requests are distributed by the load balancer in each AZ you select based on source IP addresses. If clients are in a VPC that is different 		
	from where the load balancer works, the load balancer in the AZ where the original VPC subnet resides routes the requests. If the load balancer in this AZ is unavailable, requests are distributed by the load balancer in another AZ.		
Connection ID	Load balancers can use the connection ID algorithm to route requests. The connection ID in the packet is calculated using the consistent hash algorithm to obtain a specific value, and backend servers are numbered. The generated value determines to which backend server the requests are routed.	✓	х
Load balancing algorithms	Load balancers support weighted round robin, weighted least connections, and source IP hash.	√	√

Feature	Description	Dedicated Load Balancers	Shared Load Balance rs
Load balancing over public and private networks	 Each load balancer on a public network has a public IP address bound to it and routes requests from clients to backend servers over the Internet. Load balancers on a private network work within a VPC and route requests from clients to backend servers in the same VPC. 	√	√
Modifying the bandwidth	You can modify the bandwidth used by the EIP bound to the load balancer as required.	√	√
Binding/ Unbinding an IP address	You can bind an IP address to a load balancer or unbind the IP address from a load balancer based on service requirements.	√	√
Sticky session	If you enable sticky sessions, requests from the same client will be routed to the same backend server during the session.	✓	√
Access control	 You can add IP addresses to a whitelist or blacklist to control access to a listener. A whitelist allows specified IP addresses to access the listener. A blacklist denies access from specified IP addresses. 	✓	√
Health check	Load balancers periodically send requests to backend servers to check whether they can process requests.	√	√
Certificate management	You can create two types of certificates: server certificate and CA certificate. If you need an HTTPS listener, you need to bind a server certificate to it. To enable mutual authentication, you also need to bind a CA certificate to the listener. You can also replace a certificate that is already used by a load balancer.	✓	✓

Feature	Description	Dedicated Load Balancers	Shared Load Balance rs
Tagging	If you have a large number of cloud resources, you can assign different tags to the resources to quickly identify them and use these tags to easily manage your resources.	✓	√
Monitoring	You can use Cloud Eye to monitor load balancers and associated resources and view metrics on the management console.	√	√
Log auditing	You can use Cloud Trace Service (CTS) to record operations on load balancers and associated resources for query, auditing, and backtracking.	✓	√

1.6 Load Balancing on a Public or Private Network

A load balancer can work on either a public or private network.

Load Balancing on a Public Network

You can bind an EIP to a load balancer so that it can receive requests from the Internet and route the requests to backend servers.

Figure 1-14 Load balancing on a public network

Load Balancing on a Private Network

A load balancer has only a private IP address to receive requests from clients in a VPC and routes the requests to backend servers in the same VPC. This type of load balancer can only be accessed in a VPC.

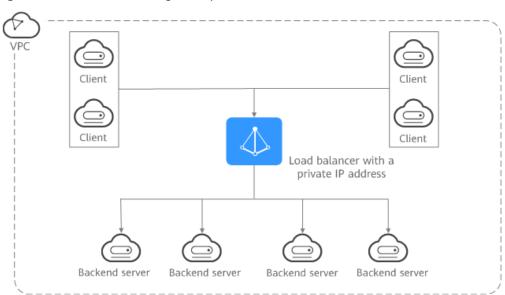


Figure 1-15 Load balancing on a private network

Network Types and Load Balancers

Table 1-7 Dedicated load balancers and their network types

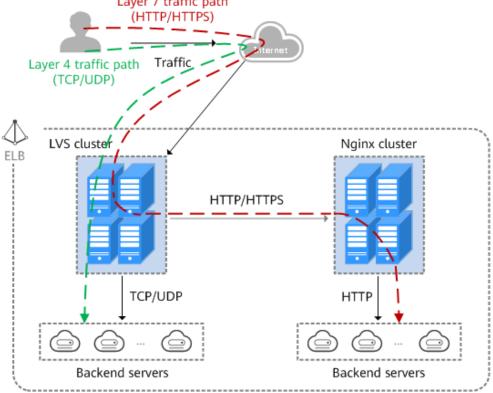
Load Balancer Type	Network Type	Description
Dedicated load	Public IPv4 network	Each load balancer has an IPv4 EIP bound to enable it to route requests over the Internet.
balancers	Private IPv4 network	Each load balancer has only a private IPv4 address and can route requests in a VPC.
	IPv6 network	 Each load balancer has an IPv6 address bound. If the IPv6 address is added to a shared bandwidth, the load balancer can route requests over the Internet. If the IPv6 address is not added to a shared bandwidth, the load balancer can route requests only in a VPC.

Table 1-8 Shared load balancers and their network types

Load Balancer Type	Network Type	Description
Shared load balancers	Public IPv4 network	Each load balancer has an EIP bound to enable it to route requests over the Internet.
	Private IPv4 network	Each load balancer has only a private IP address and can route requests in a VPC.
		NOTE Shared load balancers support private IPv4 networks by default. The private IP address of a shared load balancer cannot be changed.

1.7 Network Traffic Paths

Load balancers communicate with backend servers over a private network.


- If backend servers process only requests routed from load balancers, there is no need to assign EIPs or create NAT gateways.
- If backend servers need to provide Internet-accessible services or access the Internet, you must assign EIPs or create NAT gateways.

Inbound Network Traffic Paths

The listeners' configurations determine how load balancers distribute incoming traffic.

Figure 1-16 Inbound network traffic

Layer 7 traffic path

When a listener uses TCP or UDP to receive incoming traffic:

- Incoming traffic is routed only through the LVS cluster.
- The LVS cluster directly routes incoming traffic to backend servers using the load balancing algorithm you select when you add the listener.

When a listener uses HTTP or HTTPS to receive incoming traffic:

- Incoming traffic is routed first to the LVS cluster, then to the Nginx cluster, and finally across backend servers.
- For HTTPS traffic, the Nginx cluster validates certificates and decrypts data packets before distributing the traffic across backend servers using HTTP.

Outbound Network Traffic Paths

The outbound traffic is routed back the same way the traffic came in.

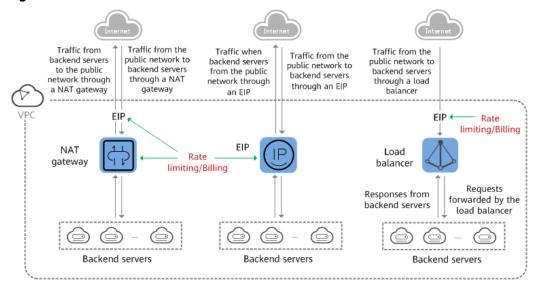


Figure 1-17 Outbound network traffic

- Because the load balancer receives and responds to requests over the Internet, traffic transmission depends on the bandwidth, which is not limited by ELB. The load balancer communicates with backend servers over a private network.
- If you have a NAT gateway, it receives and responds to incoming traffic. The
 NAT gateway has an EIP bound, through which backend servers can access
 the Internet and provide services accessible from the Internet. Although there
 is a restriction on the connections that can be processed by a NAT gateway,
 traffic transmission depends on the bandwidth
- If each backend server has an EIP bound, they receive and respond to incoming traffic directly. Traffic transmission depends on the bandwidth.

1.8 Specifications of Dedicated Load Balancers

Load balancers are available in different specifications. Choose the specifications that best meet your needs. If the traffic exceeds the selected specifications, new requests will be discarded.

Connections per second (CPS)

Indicates the number of new connections that a load balancer can establish per second. If the number reaches the CPS that is defined in the specification, new requests will be discarded to ensure the performance of established connections.

HTTPS listeners need to create SSL handshakes to establish connections with clients, and such SSL handshakes occupy more system resources than HTTP listeners. For example, a small I application load balancer can establish 2,000 new HTTP connections per second but only 200 new HTTPS connections per second.

For a small I application load balancer:

- If you only add an HTTP listener, the load balancer can establish up to 2,000 new HTTP connections.

- If you only add an HTTPS listener, the load balancer can establish up to 200 new HTTPS connections.
- If you add an HTTPS listener and an HTTP listener, the new connections are calculated using the following formula:

New connections = New HTTP connections + New HTTPS connections x Ratio of HTTP connections to HTTPS connections

For a small I application load balancer, the ratio of HTTP connections to HTTPS connections is 10. For details, see **Table 1-9**.

Table 1-9 New connections that a small I application load balancer can establish

Parameter	Scenario 1	Scenario 2
New HTTP connections	1,000	1,000
New HTTPS connections	50	150
New HTTP and HTTPS connections	1,000 + 50 x 10 = 1,500	1,000 + 150 x 10 = 2,500
Description	The new connections do not reach the CPS (HTTP) defined in Table 1-10 , and new requests can be properly routed.	The new connections reach the CPS (HTTP) defined in Table 1-10, and new requests will be discarded.

Details in Table 1-9 are for reference only.

Maximum concurrent connections

Indicates the maximum number of concurrent connections that a load balancer can handle. If the number reaches the maximum concurrent connections that is defined in the specification, new requests will be discarded to ensure the performance of the established connections.

Queries per second (QPS)

Indicates the number of HTTP or HTTPS requests sent to a backend server per second. If the QPS reaches that is defined in the specification, new requests will be discarded to ensure the performance of established connections.

• Bandwidth (Mbit/s)

Indicates the maximum amount of data that can be transmitted over a connection per second.

Table 1-10 and Table 1-11 list the specifications of dedicated load balancers.

CAUTION

- Available fixed specifications are displayed on the console and may vary depending on the resources in different regions.
- The load balancing type cannot be changed after being selected.
 For example, after you select network load balancing, you cannot change it to application load balancing. You can add only TCP and UDP listeners and cannot add HTTP and HTTPS listeners.

Table 1-10 Specifications for application load balancing (HTTP/HTTPS)

Туре	Maximum Concurrent Connectio ns	CPS (HTTP)	CPS (HTTPS)	QPS	Bandwidt h (Mbit/s)
Small I	200,000	2,000	200	4,000	50
Small II	400,000	4,000	400	8,000	100
Mediu m I	800,000	8,000	800	16,000	200
Mediu m II	2,000,000	20,000	2,000	40,000	400
Large I	4,000,000	40,000	4,000	80,000	1,000
Large II	8,000,000	80,000	8,000	160,000	2,000

Table 1-11 Specifications for network load balancing (TCP/UDP)

Туре	CPS	Maximum Concurrent Connections	Bandwidth (Mbit/s)
Small I	10,000	500,000	50
Small II	20,000	1,000,000	100
Medium I	40,000	2,000,000	200
Medium II	80,000	4,000,000	400
Large I	200,000	10,000,000	1,000
Large II	400,000	20,000,000	2,000

□ NOTE

- If you add multiple listeners to a load balancer, the sum of QPS values of all listeners cannot exceed the QPS defined in each specification.
- The bandwidth is the upper limit of the inbound or the outbound traffic. For example, for small I load balancers, the inbound or outbound traffic cannot exceed 50 Mbit/s.
- The bandwidth included in each specification is the maximum bandwidth provided by ELB. If the maximum bandwidth is exceeded, the network performance may be affected.

1.9 Quotas and Constraints

You can create dedicated and shared load balancers on ELB console. This section describes the quotas and restrictions that apply to ELB resources.

ELB Resource Quotas

Quotas put limits on the number or amount of resources, such as the maximum number of ECSs or EVS disks that you can create.

Table 1-12 lists the default resource quotas. Each user may have different resource quotas.

Table 1-12 ELB resource quotas

Resource	esource Description	
Load balancers	Load balancers per account	50
Listeners	Listeners per account	100
Forwarding policies	Forwarding policies per account	500
Backend server groups	Backend server groups per account	500
Certificates	Certificates per account	120
Backend servers	Backend servers per account	500
Listeners per load balancer	Listeners that can be added to a load balancer	50

Ⅲ NOTE

The quotas apply to a single account.

Other Quotas

In addition to quotas described in **ELB Resource Quotas**, some other resources that you can use are also limited.

Table 1-13 Other quotas

Resource	Description	Default Quota
Forwarding rules per forwarding policy	Forwarding rules that can be added to a forwarding policy	10
Backend servers per backend server group	Backend servers that can be added to a backend server group	500
IP address group		
IP address groups per load balancer	IP address groups per account	50
Listeners per IP address group	Listeners that can be associated with an IP address group	50
IP addresses per IP address group	IP addresses that can be added to an IP address group	300

Load Balancer

- The maximum size of data that a load balancer can forward:
 - Layer 4 listeners: any
 - Layer 7 listeners:
 - 10 GB (file size)
 - 32 KB (the total size of the HTTP request line and HTTP request header)

Listener

- The listener of a dedicated load balancer can be associated with a maximum of 50 backend server groups.
- An HTTPS listener can have up to 30 SNI certificates.
- Once set, the frontend protocol and port of the listener cannot be modified.

Forwarding Policy

- Forwarding policies can be configured only for HTTP and HTTPS listeners.
- Forwarding policies must be unique.
- A maximum of 100 forwarding policies can be configured for a listener. If the number of forwarding policies exceeds the quota, the excess forwarding policies will not be applied.
- Forwarding conditions:
 - If the advanced forwarding policy is not enabled, each forwarding rule has only one forwarding condition.
 - If the advanced forwarding policy is enabled, each forwarding rule has up to 10 forwarding conditions.

Table 1-14 Restrictions on forwarding policies

Load Balancer Type	Advanced Forwardi ng	Forwarding Rule	Action
Shared	Not supported	Domain name and URL	Forward to another backend server group and Redirect to another listener
Dedicated	Disabled	Domain name and URL	Forward to another backend server group and Redirect to another listener
	Enabled	Domain name, URL, HTTP request method, HTTP header, query string, and CIDR block	Forward to a backend server group, Redirect to another listener, Redirect to another URL, and Return a specific response body

Backend Server Group

The backend protocol of the backend server group must match the frontend protocol of the listener as described in **Table 1-15**.

Table 1-15 The frontend and backend protocol

Frontend Protocol	Backend Protocol
ТСР	ТСР
UDP	• UDP
	• QUIC
НТТР	НТТР
HTTPS	• HTTP
	• HTTPS

Backend Server

If **Transfer Client IP Address** is enabled, a server cannot serve as both a backend server and a client.

TLS Security Policy

You can create a maximum of 50 TLS security policies.

1.10 Billing (Shared Load Balancers)

Billing Items

ELB supports load balancing over both public and private networks. **Table 1-16** describes the billing items.

Table 1-16 Billing items

Network Type	Load Balancer	EIP
Public network	Pay-per-use	EIP Pricing Details
Private network	Pay-per-use	Not involved

Bandwidth Billing Options

Shared load balancers are billed on a pay-per-use basis. Each load balancer on a public network has an EIP bound to receive requests from the Internet.

The bandwidth that will be used by the EIP is billed by traffic or fixed bandwidth:

- By traffic: You specify a maximum bandwidth and pay for the total outbound traffic. This is suitable for applications with predictable peaks and troughs in traffic.
- By bandwidth: You specify a maximum bandwidth and pay for the amount of time you use the bandwidth. This is ideal for applications that require stable bandwidth.

Changing the Bandwidth Configuration

You can change the bandwidth configuration, including its name, size, and billing option.

If you change the billing option to **By bandwidth**, you will be charged for the duration you use the bandwidth. If you change the billing option to **By traffic**, you will be charged for the total outbound traffic.

1.11 Billing (Dedicated Load Balancers)

This section describes how dedicated load balancers will be billed.

Billing Items

The following table describes the billing items of dedicated load balancers.

Table 1-17 Billing items

Billing Mode	Load Balancer	LCU	Billing Formula
Pay-per- use	√	√	Load balancer price + LCU price NOTE The load balancers are free of charge. You only need to pay for the LCUs.

Table 1-18 describes the billing items.

Table 1-18 Billing items

Billing Item	Description
Load balancer	You will be charged for the duration that you use the dedicated load balancer. If the load balancer is used for less than 1 hour, you will be charged for the actual duration, accurate to seconds.
LCU	You will be charged for the number of LCUs used by a dedicated load balancer.

■ NOTE

- √ indicates that the billing item is involved. × indicates that the billing item is not involved.
- An LCU measures the dimensions on which a dedicated load balancer routes the traffic. The four dimensions measured are as follows:
 - New connections: the number of new connections that a dedicated load balancer establishes per second
 - Maximum concurrent connections: the maximum number of concurrent connections that a dedicated load balancer can handle
 - Queries per second: the number of Layer-7 HTTP or HTTPS requests that a dedicated load balancer routes to a backend server per second
 - Processed traffic: each GB of data transferred through a dedicated load balancer
- If you bind an EIP to a dedicated load balancer, you will also be charged for the EIP and the bandwidth used by the EIP.

Billing Mode

Dedicated load balancers can be billed on a pay-per-use basis.

Dedicated load balancers provide Layer-4 packages and Layer-7 packages. You can select a Layer-4 package, a Layer-7 package, or both based on your requirements.

- The total bandwidth is the inbound or outbound bandwidth used for traffic to or from the backend servers.
- For details, see Table 1-10 and Table 1-11.

• Pay-per-use

Formula: Total price = Load balancer price + LCU price

- Load balancer price = Unit price (EUR/hour) x Usage duration
- LCU price = Unit price (EUR/hour) x LCU quantity in a single AZ x Number of AZs x Usage duration

1.12 Permissions

If you need to assign different permissions to personnel in your enterprise to access your ELB resources, IAM is a good choice for fine-grained permissions management. IAM provides identity authentication, permissions management, and access control, helping you securely access your cloud resources.

With IAM, you can create IAM users and assign permissions to control their access to specific resources. For example, if you want some software developers in your enterprise to use ELB resources but do not want them to delete these resources or perform any other high-risk operations, you can grant permission to use ELB resources but not permission to delete them.

Skip this section if your account does not require individual IAM users for permissions management.

IAM is a free service. You only pay for the resources in your account. For more information about IAM, see the *IAM Service Overview*.

ELB Permissions

New IAM users do not have any permissions assigned by default. You need to first add them to one or more groups and attach policies or roles to these groups. The users then inherit permissions from the groups and can perform specified operations on cloud services based on the permissions they have been assigned.

ELB is a project-level service deployed for specific regions. To assign ELB permissions to a user group, specify the scope as region-specific projects and select projects for which you want the permissions to take effect. If you select **All projects**, the permissions will take effect for the user group in all region-specific projects. When accessing ELB, users need to switch to the authorized region.

You can grant permissions by using roles and policies.

- Roles: A coarse-grained authorization strategy provided by IAM to assign
 permissions based on users' job responsibilities. Only a limited number of
 service-level roles are available for authorization. When you grant permissions
 using roles, you also need to attach any existing role dependencies. Roles are
 not ideal for fine-grained authorization and least privilege access.
- Policies: A fine-grained authorization strategy provided by IAM to assign permissions required to perform operations on specific cloud resources under certain conditions. This type of authorization is more flexible and is ideal for

least privilege access. For example, you can grant ELB users only permissions to manage a certain type of resources. A majority of fine-grained policies contain permissions for specific APIs, and permissions are defined using API actions. For the API actions supported by ELB, see *Elastic Load Balance API Reference*.

Table 1-19 lists all the system-defined permissions for ELB.

Table 1-19 System-defined permissions for ELB

Role/ Policy Name	Description	Туре
ELB FullAccess	Permissions: all permissions on ELB resources Scope: project-level service	System-defined policy
ELB ReadOnly Access	Permissions: read-only permissions on ELB resources Scope: project-level service	System-defined policy
ELB Administra tor	Permissions: all permissions on ELB resources. To be granted this permission, users must also have the Tenant Administrator, VPC Administrator, CES Administrator, Server Administrator and Tenant Guest permissions.	System-defined role
	Scope: project-level service	
	NOTE If your account has applied for fine-grained permissions, configure fine-grained policies for ELB system permissions, instead of ELB Administrator policies.	

Table 1-20 describes common operations supported by each system policy of ELB.

Table 1-20 Common operations supported by system-defined policies

Operation	ELB FullAccess	ELB ReadOnlyAccess	ELB Administrator
Creating a load balancer	Supported	Not supported	Supported
Querying a load balancer	Supported	Supported	Supported
Querying a load balancer and associated resources	Supported	Supported	Supported

Operation	ELB FullAccess	ELB ReadOnlyAccess	ELB Administrator
Querying load balancers	Supported	Supported	Supported
Modifying a load balancer	Supported	Not supported	Supported
Deleting a load balancer	Supported	Not supported	Supported
Adding a listener	Supported	Not supported	Supported
Querying a listener	Supported	Supported	Supported
Modifying a listener	Supported	Not supported	Supported
Deleting a listener	Supported	Not supported	Supported
Adding a backend server group	Supported	Not supported	Supported
Querying a backend server group	Supported	Supported	Supported
Modifying a backend server group	Supported	Not supported	Supported
Deleting a backend server group	Supported	Not supported	Supported
Adding a backend server	Supported	Not supported	Supported
Querying a backend server	Supported	Supported	Supported
Modifying a backend server	Supported	Not supported	Supported
Deleting a backend server	Supported	Not supported	Supported
Configuring a health check	Supported	Not supported	Supported
Querying a health check	Supported	Supported	Supported

Operation	ELB FullAccess	ELB ReadOnlyAccess	ELB Administrator
Modifying a health check	Supported	Not supported	Supported
Disabling a health check	Supported	Not supported	Supported
Assigning an EIP	Not supported	Not supported	Supported
Binding an EIP to a load balancer	Not supported	Not supported	Supported
Querying an EIP	Supported	Supported	Supported
Unbinding an EIP from a load balancer	Not supported	Not supported	Supported
Viewing metrics	Not supported	Not supported	Supported
Viewing access logs	Not supported	Not supported	Supported

1.13 Product Concepts

1.13.1 Basic Concepts

Table 1-21 Some concepts about ELB

Term	Definition
Load balancer	A load balancer distributes incoming traffic across backend servers.
Listener	A listener listens on requests from clients and routes the requests to backend servers based on the settings that you configure when you add the listener.
Backend server	Backend servers receive and process requests from the associated load balancer. When you add a listener to a load balancer, you can create or select a backend server group to receive requests from the load balancer by using the port and protocol you specify for the backend server group and the load balancing algorithm you select.

Term	Definition
Backend server group	A backend server group is a collection of cloud servers that have same features. When you add a listener, you select a load balancing algorithm and create or select a backend server group. Incoming traffic is routed to the corresponding backend server group based on the listener's configuration.
Health check	ELB periodically sends requests to backend servers to check whether they can process requests. This process is called health check. If a backend server is detected unhealthy, the load balancer will stop route requests to it. After the backend server recovers, the load balancer will resume routing requests to it.
Redirect	HTTPS is an extension of HTTP. HTTPS encrypts data between a web server and a browser.
Sticky session	Sticky sessions ensure that requests from a client always get routed to the same backend server before a session elapses.
WebSocke t	WebSocket is a new HTML5 protocol that provides full-duplex communication between the browser and the server. WebSocket saves server resources and bandwidth, and enables real-time communication. Both WebSocket and HTTP depend on TCP to transmit data. A handshake connection is required between the browser and server, so that they can communicate with each other only after the connection is established. However, as a bidirectional communication protocol, WebSocket is different from HTTP. After the handshake succeeds, both the server and browser (or client agent) can actively send data to or receive data from each other.
SNI	SNI, an extension to Transport Layer Security (TLS), enables a server to present multiple certificates on the same IP address and port number. SNI allows the client to indicate the domain name of the website while sending an SSL handshake request. Once receiving the request, the load balancer queries the right certificate based on the hostname or domain name and returns the certificate to the client. If no certificate is found, the load balancer will return the default certificate.
Persistent connectio n	A persistent connection allows multiple data packets to be sent continuously over a TCP connection. If no data packet is sent during the connection, the client and server send link detection packets to each other to maintain the connection.
Short connectio n	A short connection is a connection established when data is exchanged between the client and server and immediately closed after the data is sent.
Concurren t connectio n	Concurrent connections are total number of TCP connections initiated by clients and routed to backend servers by a load balancer per second.

1.13.2 Region and AZ

Concept

A region and availability zone (AZ) identify the location of a data center. You can create resources in a specific region and AZ.

- A region is a physical data center, which is completely isolated to improve fault tolerance and stability. The region that is selected during resource creation cannot be changed after the resource is created.
- An AZ is a physical location where resources use independent power supplies and networks. A region contains one or more AZs that are physically isolated but interconnected through internal networks. Because AZs are isolated from each other, any fault that occurs in one AZ will not affect others.

Figure 1-18 shows the relationship between regions and AZs.

Figure 1-18 Regions and AZs

Selecting a Region

Select a region closest to your target users for lower network latency and quick access.

Selecting an AZ

When deploying resources, consider your applications' requirements on disaster recovery (DR) and network latency.

- For high DR capability, deploy resources in different AZs within the same region.
- For lower network latency, deploy resources in the same AZ.

Regions and Endpoints

Before you use an API to call resources, specify its region and endpoint. For more details, see **Regions and Endpoints**.

1.14 How ELB Works with Other Services

• Virtual Private Cloud (VPC)

Provides IP addresses and bandwidth for load balancers.

Auto Scaling (AS)

Works with ELB to automatically scale the number of backend servers for faster traffic distribution.

• Identity and Access Management (IAM)

Provides authentication for ELB.

• Elastic Cloud Server (ECS)

Provides servers to run your applications in the cloud. Configure load balancers to route traffic to the servers or containers.

• Log Tank Service (LTS)

Stores access logs of HTTP or HTTPS requests to your load balancer for query and analysis later if you have enabled access logging.

• Cloud Trace Service (CTS)

Records the operations performed on ELB resources.

Cloud Eye

Monitors the status of load balancers and listeners, without any additional plug-in.

2 Getting Started

2.1 Overview

To use ELB to distribute traffic across backend servers, you need to create a dedicated load balancer or a shared load balancer.

Two examples are given to show how you can quickly create a shared load balancer to distribute incoming traffic across backend servers.

 Entry level: An application deployed on separated ECSs needs to handle a large number of requests. Health checks are required to monitor the health of the servers to ensure that incoming traffic is routed only to healthy servers to eliminate SPOFs and improve service availability.

VPC

Listener listener-HTTP (HTTP/80)

ECS01

ECS02

Figure 2-1 Entry level

As the incoming traffic increases, you can add more backend servers to balance the load.

Advanced level: An application deployed on separated servers uses one
domain name but different URLs to provide services, and requests are routed
to different servers based on the URLs. Forwarding policies are required to
forward requests from different URLs to the servers in the corresponding
backend server groups.

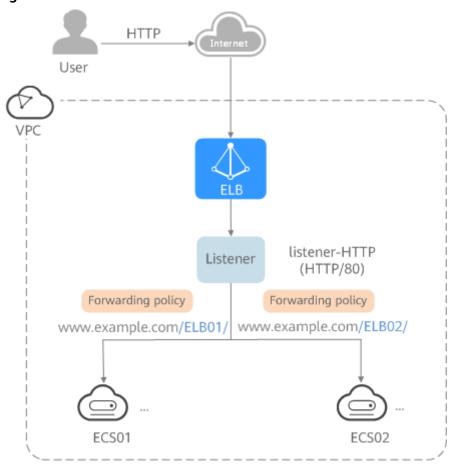


Figure 2-2 Advanced level

As the incoming traffic increases, you can add more backend servers to the two backend server groups. You can also configure health checks to monitor the health of backend servers to ensure that incoming traffic is routed only to healthy backend servers.

2.2 Process Flowchart

Figure 1 shows how you can use basic functions of ELB to route requests when you are still new to ELB, and **Figure 2** shows how you can use ELB to route requests based on domain names or URLs more efficiently.

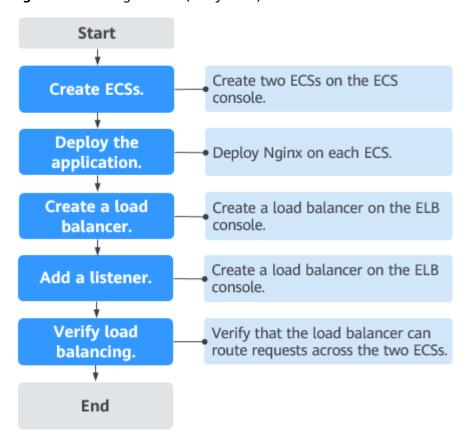


Figure 2-3 Getting started (entry level)

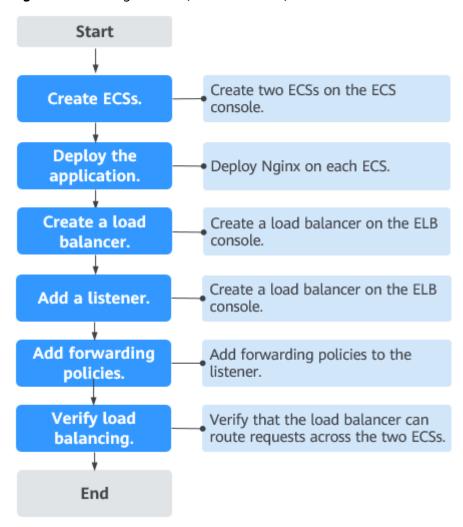


Figure 2-4 Getting started (advanced level)

2.3 Using Shared Load Balancers (Entry Level)

Scenarios

You have a web application, which often needs to handle heavy traffic and is deployed on two ECSs for load balancing.

You can create a load balancer to distribute traffic evenly across the two ECSs, which eliminates SPOFs and makes your application more available.

Prerequisites

To ensure normal communications between the load balancer and backend servers, you need to check the security group rules and network ACL rules configured for the backend servers.

When backend servers receive requests from the load balancer, source IP addresses are translated into those in 100.125.0.0/16 or 100.126.0.0/16.

- Security group rules must allow traffic from the 100.125.0.0/16 and 100.126.0.0/16 to backend servers.
- Network ACL rules are optional for subnets. If network ACL rules are configured for the backend subnet of the load balancer, the network ACL rules must allow traffic from the backend subnet of the load balancer to the backend servers.

□ NOTE

If **Transfer Client IP Address** is enabled for the TCP or UDP listeners, network ACL rules and security group rules will not take effect. You can use access control to limit which IP addresses are allowed to access the listener.

Creating ECSs

ECSs are used as backend servers.

Each ECS needs an EIP for accessing the Internet, and the EIP is used for configuring the application on the ECS. You can determine whether to bind an EIP to the load balancer based on your requirements.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- Hover on in the upper left corner to display Service List and choose Computing > Elastic Cloud Server.
- 4. Click **Create ECS**, configure the parameters, and click **Create Now**.

The following table lists the specifications of the two ECSs.

Table 2-1 ECS specifications

Item	Example Value
Name	ECS01 and ECS02
OS	CentOS 7.2 64bit
vCPUs	2
Memory	4 GiB
System disk	40 GiB
Data disk	100 GiB
Bandwidth	5 Mbit/s

5. Submit your request.

Deploying the Application

Deploy Nginx on the two ECSs and edit two HTML pages so that a page with message "Welcome to ELB test page one!" is returned when ECS01 is accessed,

and the other page with message "Welcome to ELB test page two!" is returned when ECS02 is accessed.

- Log in to the ECSs.
- 2. Install and start Nginx.
 - a. Run the **wget** command to download the Nginx installation package for your operating system in use. CentOS 7.6 is used as an example here. wget http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm
 - b. Run the following command to create the Nginx yum repository: rpm -ivh nginx-release-centos-7-0.el7.ngx.noarch.rpm
 - c. Run the following command to install Nginx: yum -y install nginx
 - d. Run the following commands to start Nginx and configure automatic Nginx enabling upon ECS startup:

 systemctl start nginx
 systemctl enable nginx
 - e. Enter **http://**EIP bound to the ECS in the address box of your browser. If the following page is displayed, Nginx has been installed.

Figure 2-5 Nginx installed successfully

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to <u>nginx.org</u>. Commercial support is available at <u>nginx.com</u>.

Thank you for using nginx.

3. Modify the HTML page of ECS01.

Modify the **index.html** file in the default root directory of Nginx **/usr/share/nginx/html** to identify access to ECS01.

Open the index.html file.

vim /usr/share/nginx/html/index.html

- b. Press i to enter editing mode.
- c. Modify the index.html file to be as follows:

- d. Press **Esc** to exit editing mode. Then, enter :**wq** to save the settings and exit the file.
- 4. Modify the HTML page of ECS02.

Modify the **index.html** file in the default root directory of Nginx **/usr/share/nginx/html** to identify access to ECS02.

a. Open the index.html file.

vim /usr/share/nginx/html/index.html

- b. Press i to enter editing mode.
- c. Modify the **index.html** file to be as follows:

- d. Press **Esc** to exit editing mode. Then, enter :**wq** to save the settings and exit the file.
- 5. Use your browser to access **http://**ECS01 EIP and **http://**ECS02 EIP to verify that Nginx has been deployed.

If the modified HTML pages are displayed, Nginx has been deployed.

HTML page of ECS01

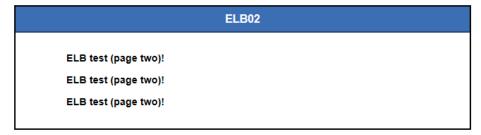
Figure 2-6 Nginx successfully deployed on ECS01

Welcome to **ELB** test page one!

This page is used to test the ELB!

```
ELB test (page one)!

ELB test (page one)!


ELB test (page one)!
```

HTML page of ECS02

Figure 2-7 Nginx successfully deployed on ECS02

This page is used to test the ELB!

Creating a Load Balancer

The load balancer needs an EIP to access the application deployed on the ECSs over the Internet. You can determine whether to bind an EIP to the load balancer based on your requirements. For details, see **Load Balancing on a Public or Private Network**.

- 1. In the upper left corner of the page, click of and select the desired region and project.
- 2. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 3. Click Create Elastic Load Balancer and then configure the parameters.
- 4. Click Create Now.
- 5. Confirm the configuration and submit your request.
- 6. View the newly created load balancer in the load balancer list.

Adding a Listener

Add a listener to the created load balancer. When you add the listener, create a backend server group, configure a health check, and add the two ECSs to the created backend server group.

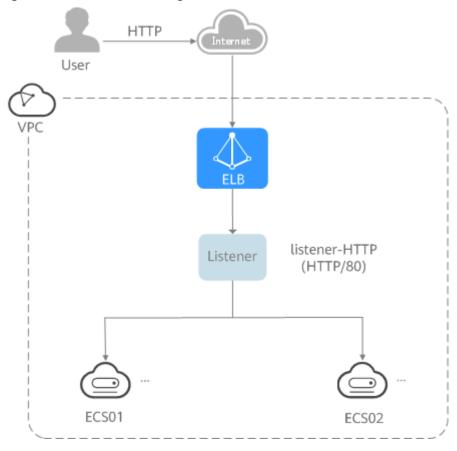


Figure 2-8 Traffic forwarding

- 1. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 2. Locate the created load balancer (elb-01) and click its name.
- 3. Under **Listeners**, click **Add Listener**.
- 4. Configure the parameters as follows:
 - Name: Enter a name, for example, listener-HTTP.
 - Frontend Protocol: Select a protocol, for example, HTTP.
 - Frontend Port: Enter a port, for example, 80.
- 5. Click **Next: Configure Request Routing Policy**, select or create a backend group, and select a load balancing algorithm.
 - Backend Server Group: Select Use existing or Create new.
 Here we create a backend server group named server_group-ELB.
 - Load Balancing Algorithm: Select an algorithm that the load balancer will use to route requests, for example, Weighted round robin.
- 6. Click **Next: Add Backend Server** and enable the health check.

Configure the health check as follows:

 Protocol: Select a protocol for the load balancer to perform health checks on backend servers. If the load balancer uses TCP, HTTP, or HTTPS to receive requests, the health check protocol can be TCP or HTTP. Here we use HTTP as an example.

- Domain Name: Enter a domain name that will be used for health checks, for example, www.example.com.
- Health Check Port: Enter a port for the load balancer to perform health checks on backend servers, for example, 80.
 - If you do not specify a health check port, the backend port will be used for health checks by default. If you specify a port, it will be used for health check.
- 7. Click **Next: Confirm**, confirm the configurations, and click **Submit**.
- 8. On the **Listeners** tab, locate the target listener. In the **Default Backend Server Group** column, click **View/Add Backend Server**.
- 9. On the **Backend Servers** tab, click the **Backend Servers** tab and click **Add** on the top right.
- 10. Select the servers you want to add, set the backend port, and click **Finish**.
 - Backend servers: Select ECS01 and ECS02.
 - Backend port: Set it to 80. Backend servers will use this port to communicate with the load balancer.

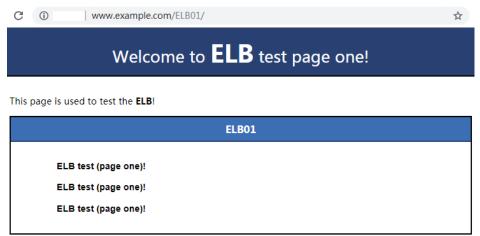
Verifying Load Balancing

After the load balancer is configured, you can access the domain name to check whether the two ECSs are accessible.

 Modify the C:\Windows\System32\drivers\etc\hosts file on your PC to map the domain name to the load balancer EIP.

View the load balancer EIP on the **Summary** page of the load balancer.

Figure 2-9 hosts file on your PC


2. On the CLI of your PC, run the following command to check whether the domain name is mapped to the load balancer EIP:

ping www.example.com

If data packets are returned, the domain name has been mapped to the load balancer EIP.

3. Use your browser to access **http://www.example.com**. If the following page is displayed, the load balancer has routed the request to ECS01.

Figure 2-10 Accessing ECS01

4. Use your browser to access **http://www.example.com**. If the following page is displayed, the load balancer has routed the request to ECS02.

Figure 2-11 Accessing ECS02

2.4 Using Shared Load Balancers (Advanced Level)

Scenarios

You have two web applications that are deployed on separated ECSs but use the same domain name for access. You can set different URLs to process requests.

To forward requests based on URLs, you need to create a load balancer, add an HTTP or HTTPS listener, and add forwarding policies to specify the URLs.

An HTTP listener is used as an example to describe how to route requests from two URLs (/ELB01 and /ELB02) of the same domain name (www.example.com) to different backend servers.

Prerequisites

To ensure normal communications between the load balancer and backend servers, you need to check the security group rules and network ACL rules configured for the backend servers.

When backend servers receive requests from the load balancer, source IP addresses are translated into those in 100.125.0.0/16 or 100.126.0.0/16.

- Security group rules must allow traffic from the 100.125.0.0/16 and 100.126.0.0/16 to backend servers.
- Network ACL rules are optional for subnets. If network ACL rules are configured for the backend subnet of the load balancer, the network ACL rules must allow traffic from the backend subnet of the load balancer to the backend servers.

□ NOTE

If **Transfer Client IP Address** is enabled for the TCP or UDP listeners, network ACL rules and security group rules will not take effect. You can use access control to limit which IP addresses are allowed to access the listener.

Creating ECSs

ECSs are used as backend servers to process requests. Each ECS needs an EIP for accessing the Internet and configuring the application on the ECS.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Computing > Elastic Cloud Server**.
- 4. Click Create ECS, configure the parameters, and click Create Now.

The following table lists the specifications of the two ECSs.

Table 2-2 ECS specifications

Item	Example Value
Name	ECS01 and ECS02
OS	CentOS 7.2 64bit
vCPUs	2
Memory	4 GiB
System disk	40 GiB
Data disk	100 GiB
Bandwidth	5 Mbit/s

Submit your request.

Deploying the Application

Deploy Nginx on the two ECSs and edit two HTML pages so that a page with message "Welcome to ELB test page one!" is returned when ECS01 is accessed, and the other page with message "Welcome to ELB test page two!" is returned when ECS02 is accessed.

- Log in to the ECSs.
- 2. Install and start Nginx.
 - a. Run the **wget** command to download the Nginx installation package for your operating system in use. CentOS 7.6 is used as an example here. wget http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-centos-7-0.el7.ngx.noarch.rpm
 - b. Run the following command to create the Nginx yum repository: rpm -ivh nginx-release-centos-7-0.el7.ngx.noarch.rpm
 - c. Run the following command to install Nginx: yum -y install nginx
 - d. Run the following commands to start Nginx and configure automatic Nginx enabling upon ECS startup:

 systemctl start nginx

systemcti start nginx systemctl enable nginx

e. Enter **http://**EIP bound to the ECS in the address box of your browser. If the following page is displayed, Nginx has been installed.

Figure 2-12 Nginx installed successfully

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to nginx.org. Commercial support is available at nginx.com.

Thank you for using nginx.

3. Modify the HTML page of ECS01.

Move the **index.html** file from the default root directory of Nginx **/usr/share/nginx/html** to the **ELB01** directory and modify the file to identify access to ECS01.

- a. Create the ELB01 directory and copy the index.html file to this directory: mkdir /usr/share/nginx/html/ELB01
 - cp /usr/share/nginx/html/index.html /usr/share/nginx/html/ELB01/
- b. Open the **index.html** file.
 - vim /usr/share/nginx/html/ELB01/index.html
- c. Press i to enter editing mode.
- d. Modify the index.html file to be as follows:

... <body>

- e. Press **Esc** to exit editing mode. Then, enter :**wq** to save the settings and exit the file.
- 4. Modify the HTML page of ECS02.

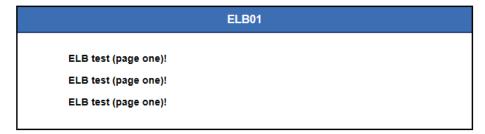
Move the **index.html** file from the default root directory of Nginx **/usr/share/nginx/html** to the **ELB02** directory and modify the file to identify access to ECS02.

- a. Create the ELB02 directory and copy the index.html file to this directory: mkdir /usr/share/nginx/html/ELB02
 cp /usr/share/nginx/html/index.html /usr/share/nginx/html/ELB02/
- b. Open the **index.html** file.

vim /usr/share/nginx/html/ELB02/index.html

- c. Press i to enter editing mode.
- d. Modify the **index.html** file to be as follows:

- e. Press **Esc** to exit editing mode. Then, enter :**wq** to save the settings and exit the file.
- 5. Use your browser to access http://ECS01 EIP/ELB01/ and http://ECS02 EIP/ELB02/ to verify that Nginx has been deployed.

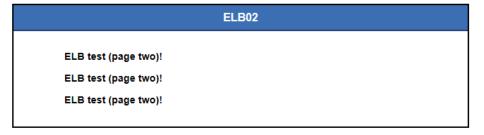

If the modified HTML pages are displayed, Nginx has been deployed.

HTML page of ECS01

Figure 2-13 Nginx successfully deployed on ECS01

Welcome to **ELB** test page one!

This page is used to test the ELB!



HTML page of ECS02

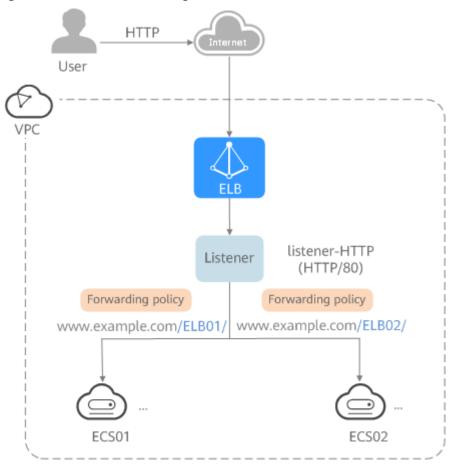
Figure 2-14 Nginx successfully deployed on ECS02

Welcome to **ELB** test page two!

This page is used to test the ELB!

Creating a Load Balancer

The load balancer needs an EIP to access the application deployed on the ECSs over the Internet. You can determine whether to bind an EIP to the load balancer based on your requirements. For details, see **Load Balancing on a Public or Private Network**.


- 1. In the upper left corner of the page, click of and select the desired region and project.
- 2. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 3. Click **Create Elastic Load Balancer** and then configure the parameters.
- 4. Click Create Now.
- 5. Confirm the configuration and submit your request.
- 6. View the newly created load balancer in the load balancer list.

Adding a Listener

Add a listener to the created load balancer. When you add the listener, create a backend server group, configure a health check, and add the two ECSs to the created backend server group.

Configure two forwarding policies to forward HTTP requests to the two ECSs, for example, requests from **www.example.com/ELB01/** to ECS01, and those from **www.example.com/ELB02/** to ECS02.

Figure 2-15 Traffic forwarding

- 1. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 2. Locate the created load balancer and click its name.
- 3. Under **Listeners**, click **Add Listener**.
- 4. Configure the parameters as follows:
 - Name: Enter a name, for example, listener-HTTP.
 - **Frontend Protocol**: Select a protocol, for example, **HTTP**.
 - Frontend Port: Enter a port, for example, 80.
- 5. Create a backend server group, configure a health check, and click **Finish**.
 - Backend server group

- Name: Enter a name, for example, server_group-ELB.
- Load Balancing Algorithm: Select an algorithm that the load balancer will use to route requests, for example, Weighted round robin.
- Health check
 - **Protocol**: Select a protocol for the load balancer to perform health checks on backend servers. If the load balancer uses TCP, HTTP, or HTTPS to receive requests, the health check protocol can be TCP or HTTP. Here we use HTTP as an example. Note that the protocol cannot be changed after the listener is added.
 - **Domain Name**: Enter a domain name that will be used for health checks, for example, www.example.com.
 - **Health Check Port**: Enter a port for the load balancer to perform health checks on backend servers, for example, **80**.

Add a Forwarding Policy

- 1. Locate the newly added listener and click **Add/Edit Forwarding Policy** in the **Forwarding Policies** column.
- 2. Click **Add Forwarding Policy** and configure a forwarding policy.
 - Name: Enter a forwarding policy name, for example, forwarding_policy-ELB01.
 - Domain name: Enter a domain name that will be used to forward the requests, for example, www.example.com. The domain name in the request must exactly match that specified in the forwarding policy.
 - URL: You can also specify a URL to forward the requests, for example, / ELB01/.
 - URL matching rule: Select a rule for matching the specified URL string with the URL in the request. Three options are available, Exact match, Prefix match, and Regular expression match. Exact match enjoys the highest priority, and Regular expression match the lowest priority. Select Exact match here.
 - Action: Select Forward to a backend server group.
 - Backend Server Group: Select Create Backend Server Group.
- 3. Create a backend server group and configure a health check.
 - Backend server group
 - Name: Enter a name, for example, server_group-ELB01.
 - Load Balancing Algorithm: Select an algorithm that the load balancer will use to route requests, for example, Weighted round robin.
 - Health check
 - Protocol: Select a protocol for the load balancer to perform health checks on backend servers. If the load balancer uses TCP, HTTP, or HTTPS to receive requests, the health check protocol can be TCP or

HTTP. Here we use HTTP as an example. Note that the protocol cannot be changed after the listener is added.

- Domain Name: Enter a domain name that will be used for health checks, for example, www.example.com.
- Health Check Port: Enter a port for the load balancer to perform health checks on backend servers, for example, 80.
- 4. Click the name of the backend server group configured for the newly added forwarding policy.
- 5. On the **Backend Servers** tab, click the **Backend Servers** tab and click **Add**.
- 6. Select the server you want to add, set the backend port, and click **Finish**.
 - Backend server: ECS01
 - Backend port: Set it to 80. Backend servers will use this port to communicate with the load balancer.
- 7. Repeat the preceding steps to add another forwarding policy, create a backend server group, and add ECS02 to the backend server group.

Verifying Load Balancing

After the load balancer is configured, you can access the domain name or the specified URL to check whether the two ECSs are accessible.

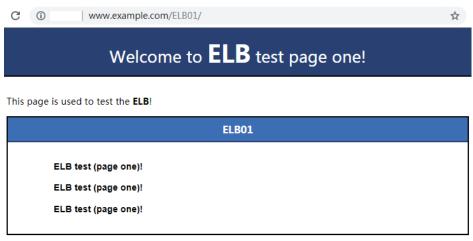
 Modify the C:\Windows\System32\drivers\etc\hosts file on your PC to map the domain name to the load balancer EIP.

View the load balancer EIP on the **Summary** page of the load balancer.

Figure 2-16 hosts file on your PC

```
# localhost name resolution is handled within DNS itself.
# 127.0.0.1 localhost
# ::1 localhost

11 4 www.example.com
```


2. On the CLI of your PC, run the following command to check whether the domain name is mapped to the load balancer EIP:

ping www.example.com

If data packets are returned, the domain name has been mapped to the load balancer EIP.

3. Use your browser to access http://www.example.com/ELB01. If the following page is displayed, the load balancer has routed the request to ECS01.

Figure 2-17 Accessing ECS01

◯ NOTE

ELB01/ indicates that the default directory named **ECS01** is accessed, while **ELB01** indicates the file name. Therefore, the slash (/) following **ELB01** must be retained.

 Use your browser to access http://www.example.com/ELB02/. If the following page is displayed, the load balancer has routed the request to ECS02.

Figure 2-18 Accessing ECS02

3 Load Balancer

3.1 Overview

A load balancer distributes incoming traffic across multiple backend servers. Before using a load balancer, you need to add at least one listener to it and associate one backend server with it.

Listener

Listener

Listener

Backend server

Backend server

Backend server

Health

Check

Backend server

Group

Backend server

Check

Backend server

Group

Figure 3-1 ELB components

Network Type

Load balancers can work on both public and private network.

Load balancers on the public network route requests over the Internet.
 Each load balancer has an EIP bound so that it can receive requests from clients on the Internet and routes the requests across backend servers.

Application scenario

- A load balancer is used as a single point of contact for clients when a group of servers provide services over the Internet.
- Fault tolerance and fault recovery are necessary.
- Load balancers on a private network route requests within a VPC.

This type of load balancers has only private IP addresses and can be accessed only in the VPC. They receive requests from clients in a VPC and route the requests across backend servers in the same VPC.

Application scenario

Both clients and backend servers are in the same VPC as the load balancer.

- There are multiple backend servers, and requests need to be evenly distributed across these servers.
- Fault tolerance and fault recovery are necessary.
- You do not want IP addresses of your physical devices to be exposed.

Load balancing on both public and private networks

Suppose that you have deployed both web servers and database servers. The web servers are accessible from users on the Internet, while the database servers can be accessed only on the private network. In this case, you can create two load balancers, one for the web servers and one for the database servers. The load balancer on the public network receives requests over the Internet and routes the requests to the web servers. Then, the load balancer on the private network forwards the requests to database servers.

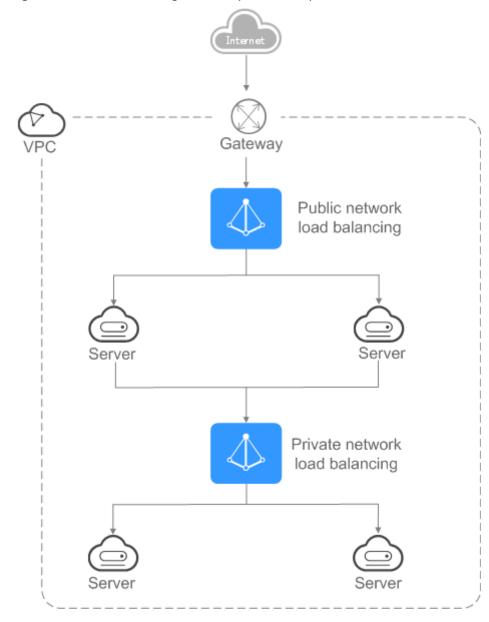


Figure 3-2 Load balancing on both public and private networks

3.2 Preparations for Creating a Load Balancer

Before creating a load balancer, you must plan its region, network, protocol, and backend servers.

Region

When you select a region, note the following:

- The region must be close to your users to reduce network latency and improve the download speed.
- Shared load balancers cannot distribute traffic across regions. When creating a load balancer, select the same region as the backend servers.

• Dedicated load balancers support adding backend servers across VPCs using the IP as a backend function. For details, see **Overview**.

ΑZ

Dedicated load balancers can be deployed across AZs. If you select multiple AZs, a load balancer is created in each selected AZ.

Load balancers in these AZs work in active-active or multi-active mode and requests are distributed by the nearest load balancer in the same AZ.

To reduce network latency and improve access speed, you are suggested to deploy your load balancer in the AZ where backend servers are running.

If disaster recovery is required, create load balancers based on the scenario:

- One load balancer in multiple AZs (disaster recovery at the AZ level)
 - If the number of requests does not exceed what the largest specifications (large II) can handle, you can create a load balancer and select multiple AZs. In this way, if the load balancer in a single AZ is abnormal, the load balancer in other AZs can route the traffic, and disaster recovery can be implemented among multiple AZs.
- Multiple load balancers and each load balancer in multiple AZs (disaster recovery at both the load balancer and AZ level)

If the number of requests exceeds what the largest specifications (large II) can handle, you can create multiple load balancers and select multiple AZs for each load balancer. In this way, if a single load balancer is abnormal, other load balancers can distribute the traffic, and disaster recovery can be implemented among multiple load balancers and AZs.

□ NOTE

- If requests are from the Internet, the load balancer in each AZ you select routes the requests based on source IP addresses. If you deploy a load balancer in two AZs, the requests the load balancers can handle will be doubled.
- For requests from a private network:
 - If clients are in the AZ you selected when you created the load balancer, requests are distributed by the load balancer in this AZ. If the load balancer is unavailable, requests are distributed by the load balancer in another AZ you select.
 - If the load balancer is available but the connections that the load balancer needs to handle exceed the amount defined in the specifications, service may be interrupted. To address this issue, you need upgrade specifications. You can monitor traffic usage on private network by AZ.
 - If clients are in an AZ that is not selected when you create the load balancer, requests are distributed by the load balancer in each AZ you select based on source IP addresses.
- If clients are in a VPC that is different from where the load balancer works, the load balancer in the AZ where the original VPC subnet resides routes the requests. If the load balancer in this AZ is unavailable, requests are distributed by the load balancer in another AZ.

Network Type

Dedicated load balancers support IPv4 public network, IPv4 private network, and IPv6 network.

- If you select the public IPv4 network, the load balancer will have an IPv4 EIP bound to route requests over the Internet.
- If you select the private IPv4 network, a private IPv4 address will be assigned to the load balancer to route requests within a VPC.
- If you select the IPv6 network, the load balancer will have an IPv6 address, which allows the load balancer to route requests within a VPC. If you add the IPv6 address to a shared bandwidth, the load balancer can also process requests over the Internet.

Shared load balancers can work in both public and private networks.

- To route requests over the Internet, you need to bind an EIP to the load balancer. The load balancer also has a private IP address and can route requests in a VPC.
- To route requests in a VPC, bind only a private IP address to the load balancer.

Specifications

Dedicated load balancers provide a broad range of specifications to meet your requirements in different scenarios. Specifications for network load balancing are suitable for TCP or UDP requests, while specifications for application load balancing are broadly used to handle HTTP or HTTPS requests. Select appropriate specifications based on your traffic volume and service requirements.

The following are some principles for you to select the specifications:

- For TCP or UDP load balancing, pay attention to the number of concurrent persistent connections, and consider Maximum Concurrent Connections as a key metric. Estimate the maximum number of concurrent connections that a load balancer can handle in the actual service scenario and select the corresponding specification.
- For HTTP or HTTPS load balancing, focus more on queries per second (QPS), which determines the service throughput of an application system. Estimate the QPS that a load balancer can handle in the actual service scenario and select the corresponding specification.
- Use the monitoring data from Cloud Eye to analyze the peak traffic, trend and regularity of the traffic to select the specifications more accurately.

Protocol

ELB provides load balancing at both Layer 4 and Layer 7.

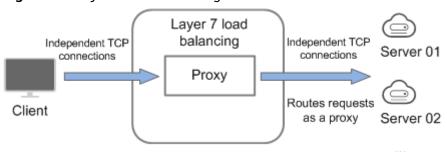

• If you choose TCP or UDP, the load balancer routes requests directly to backend servers. In this process, the destination IP address in the packets is changed to the IP address of the backend server, and the source IP address to the private IP address of the load balancer. A connection is established after a three-way handshake between the client and the backend server, and the load balancer only forwards the data.

Figure 3-3 Layer-4 load balancing

 Load balancing at Layer 7 is also called "content exchange". After the load balancer receives a request, it works as a proxy of backend servers to establish a connection (three-way handshake) with the client and then determines to which backend server the request is to be routed based on the fields in the HTTP/HTTPS request header and the load balancing algorithm you selected when you add the listener.

Figure 3-4 Layer-7 load balancing

Backend Servers

Before you use ELB, you need to create cloud servers, deploy required applications on them, and add the cloud servers to one or more backend server groups. When you create ECSs or BMSs, note the following:

- Cloud servers must be in the same region as the load balancer.
- Cloud servers that run the same OS are recommended so that you can manage them more easily.

3.3 Creating a Dedicated Load Balancer

Scenario

You have prepared everything required for creating a load balancer. For details, see **Preparations for Creating a Load Balancer**.

Constraints

- After a load balancer is created, the VPC cannot be changed. If you want to change the VPC, create a load balancer and select a different VPC.
- To ping the IP address of a load balancer, you need to add a listener to it.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. On the **Load Balancers** page, click **Buy Elastic Load Balancer**. Configure the parameters based on **Table 3-1**.

Table 3-1 Parameters for configuring the basic information

Parameter	Description	Example Value
Туре	Specifies the type of the load balancer.	Dedicated
Region	Specifies the desired region. Resources in different regions cannot communicate with each other over internal networks. For lower network latency and faster access to resources, select the nearest region.	-

Parameter	Description	Example Value
AZ	Specifies the AZ of the load balancer. You can deploy a load balancer in multiple AZs for high availability. If an AZ becomes faulty or unavailable, the load balancers in other AZs can route requests to backend servers to ensure service continuity and improve application reliability.	-
	If you deploy a load balancer in multiple AZs, its performance such as the number of new connections and the number of concurrent connections will multiply. For example, if you deploy a dedicated load balancer in two AZs, it can handle up to 40 million concurrent connections.	
	NOTE	
	 If requests are from the Internet, the load balancer in each AZ you select routes the requests based on source IP addresses. If you deploy a load balancer in two AZs, the requests the load balancers can handle will be doubled. 	
	For requests from a private network:	
	 If clients are in the AZ you selected when you created the load balancer, requests are distributed by the load balancer in this AZ. If the load balancer is unavailable, requests are distributed by the load balancer in another AZ you select. If the load balancer is available but the connections that the load balancer needs to handle exceed the amount defined in the specifications, service may be interrupted. To address this issue, you need upgrade specifications. You can monitor traffic usage on private network by AZ. 	
	 If clients are in an AZ that is not selected when you create the load balancer, requests are distributed by the load balancer in each AZ you select based on source IP addresses. 	
	If clients are in a VPC that is different from where the load balancer works, the load balancer in the AZ where the original VPC subnet resides routes the requests. If the load balancer in this AZ is unavailable, requests are distributed by the load balancer in another AZ.	

Parameter	Description	Example Value
Specificatio ns	 Select either Application load balancing (HTTP/HTTPS) or Network load balancing (TCP/ UDP) or both, and then select the desired specification. You can select only one specification for Application load balancing (HTTP/ HTTPS) and Network load balancing (TCP/UDP), respectively. Select the desired specifications based on your service plan by referring to Specifications of Dedicated Load Balancers. 	Medium II
	 For application load balancing, the number of IP addresses varies depending on the specification. You can view the number of IP addresses required by the load balancer in the advanced settings. The performance of load balancers 	
	varies depending on the selected specifications. You can evaluate the actual traffic and select appropriate specifications based on the key metrics.	

5. Configure the parameters based on Table 3-2.

 Table 3-2 Parameters for network configurations

Parameter	Description	Example Value
IP as a Backend	Specifies whether to associate backend servers that are not in the VPC of the load balancer. After this function is enabled, you can associate the backend servers with the load balancer by using their IP addresses.	N/A
	NOTE	
	 To use this function, configure correct VPC routes to ensure requests can be routed to backend servers. 	
	 If you enable the IP as a backend function, more IP addresses in the subnet will be occupied. Ensure that the selected subnet has sufficient IP addresses. After you select a subnet, you can view the number of IP addresses required by the load balancer in the infotip. 	

Parameter	Description	Example Value
Network Type	Specifies the network where the load balancer works. You can select one or more network types.	Public IPv4 network
	Public IPv4 network: The load balancer routes requests from the clients to backend servers over the Internet.	
	Private IPv4 network: The load balancer routes requests from the clients to backend servers in a VPC.	
	IPv6 network: An IPv6 address is assigned to the load balancer to route requests from IPv6 clients.	
	NOTE If you do not select any of the options, the load balancer cannot communicate with the clients after it is created. When you are using ELB or testing network connectivity, ensure that the load balancer has a public or private IP address bound.	
VPC	Specifies the VPC where the load balancer works.	vpc-test
	Select an existing VPC or create one.	
	For more information about VPC, see the <i>Virtual Private Cloud User Guide</i> .	
Frontend Subnet	Specifies the subnet where the load balancer will work.	subnet-test
	You need to configure this parameter regardless of the selected network type.	
	If you select IPv6 network for Network Type and the selected VPC does not have any subnet that supports IPv6, enable IPv6 for the subnets or create a subnet that supports IPv6. For details, see the Virtual Private Cloud User Guide.	
Private IPv4 r	network configuration	

Parameter	Description	Example Value
IPv4 Address	Specifies how you want the IPv4 address to be assigned.	Automatically assign IP address
	 Automatically assign IP address: The system automatically assigns an IPv4 address to the load balancer. 	
	 Manually specify IP address: Manually specify an IPv4 address to the load balancer. 	
	NOTE Network ACL rules configured for the backend subnet of the load balancer will not restrict the traffic from the clients to the load balancer. If network ACL rules are configured, the clients can directly access the load balancer. To control access to the load balancer, configure access control for all listeners added to the load balancer For details, see Access Control.	
IPv6 network	configuration	
IPv6 Address	Specifies how you want the IPv6 address to be assigned. NOTE Network ACL rules configured for the backend subnet of the load balancer will not restrict the traffic from the clients to the	Automatically- assigned IP address
	load balancer. If network ACL rules are configured, the clients can directly access the load balancer. To control access to the load balancer, configure access control for all listeners added to the load balancer. For details, see Access Control.	
Shared Bandwidth	Specifies the shared bandwidth that the IPv6 address will be added to.	Skip
	You can choose not to select a shared bandwidth, select an existing shared bandwidth, or assign a shared bandwidth.	
Public IPv4 network configuration		
EIP	This parameter is mandatory when Network Type is set to IPv4 public network .	-
	New EIP: The system will assign a new EIP to the load balancer.	
	Use existing: Select an existing IP address.	

Parameter	Description	Example Value
EIP Type	Specifies the link type (BGP) when a new EIP is used.	Dynamic BGP
Billed By	Specifies how the bandwidth will be billed.	Shared Bandwidth
	You can select Bandwidth , Traffic , or Shared Bandwidth .	
	Bandwidth: You specify the maximum bandwidth and pay for the amount of time you use the bandwidth.	
	Dedicated: You specify the maximum bandwidth and pay for the total traffic you use.	
	Shared Bandwidth	
Bandwidth	Specifies the maximum bandwidth.	100 Mbit/s

6. Configure other parameters about the load balancer as described in **Table 3-3**.

Table 3-3 Other parameters

Parameter	Description	Example Value
Name	Specifies the load balancer name.	elb-test
Enterprise Project	Selects an enterprise project by which cloud resources and members are centrally managed.	default
Advanced set	tings	
Backend Subnet	The load balancer uses the IP addresses in the backend subnet to forward requests to the backend servers.	Subnet of the load balancer
	 Select Subnet of the load balancer by default. 	
	 Select an existing subnet in the VPC where the load balancer works. 	
	Add a new subnet	
	NOTE The number of IP addresses required depend on the specifications, number of AZs, and IP as a backend function you have configured when you create the load balancer on the console.	
Description	Provides supplementary information about the load balancer.	-

Parameter	Description	Example Value
Tag	Identifies load balancers so that they can be easily found. A tag consists of a tag key and a tag value. The tag key marks a tag, and the tag value specifies specific tag content. For details about the naming specifications, see Table 3-4 . A maximum of 10 tags can be added.	Key: elb_key1Value: elb-01

Table 3-4 Tag naming rules

Item	Requirement	Example Value
Tag key	 Cannot be empty. Must be unique for the same load balancer. Can contain a maximum of 36 characters. Only letters, digits, hyphens (-), underscores (_), and Unicode characters from \u4e00 to \u9fff are allowed. 	elb_key1
Value	 Can contain a maximum of 43 characters. Only letters, digits, periods (.), hyphens (-), underscores (_), and Unicode characters from \u4e00 to \u9fff are allowed. 	elb-01

- 7. Click Create Now.
- 8. Confirm the configuration and submit your request.

3.4 Creating a Shared Load Balancer

Scenarios

You have prepared everything required for creating a load balancer. For details, see **Preparations for Creating a Load Balancer**.

Load balancers receive requests from clients and route them to backend servers, which answer to these requests over the private network.

Constraints

- After a load balancer is created, the VPC cannot be changed. If you want to change the VPC, create another load balancer and select the VPC during creation.
- To ping the IP address of a load balancer, you need to add a listener and associate a backend server to it.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, click **Buy Elastic Load Balancer**. Configure the parameters based on **Table 3-5**.

Table 3-5 Parameters for configuring the basic information

Parameter	Description	Example Value
Туре	Specifies the type of the load balancer.	Shared
Region	Specifies the desired region. Resources in different regions cannot communicate with each other over internal networks. For lower network latency and faster access to resources, select the nearest region.	-

5. Configure the network parameters based on **Table 3-6**.

Table 3-6 Parameters for network configurations

Parameter	Description	Example Value
Network Type	Specifies the network type of a load balancer. You can select either of the following:	Public IPv4 network
	Public IPv4 network: The load balancer routes requests from the clients to backend servers over the Internet.	
	Private IPv4 network: The load balancer routes requests from the clients to backend servers in the same VPC as the load balancer.	
VPC	Specifies the VPC where the load balancer works.	-
	Select an existing VPC or create one.	
	For more information about VPC, see the <i>Virtual Private Cloud User Guide</i> .	
Frontend Subnet	Specifies the subnet where the load balancer will work.	-

Parameter	Description	Example Value
IPv4 Address	Specifies how you want the IPv4 address to be assigned. • Automatically assign IP address: The system automatically assigns an IPv4 address to the load balancer.	Automatically assign IP address
	Manually specify IP address: Manually specify an IPv4 address to the load balancer.	
	NOTE Network ACL rules configured for the backend subnet of the load balancer will not restrict the traffic from the clients to the load balancer. If network ACL rules are configured, the clients can directly access the load balancer. To control access to the load balancer, configure access control for all listeners added to the load balancer. For details, see Access Control.	
EIP	Specifies the public IP address that will be bound to the load balancer for receiving and forwarding requests over the Internet.	New EIP
	You can use an existing EIP or apply for a new one.	
	New EIP: The system will automatically assign an EIP.	
	• Use existing : Select an existing EIP.	
EIP Type	Specifies the link type (BGP) when a new EIP is used.	Dynamic BGP
	Static BGP: When changes occur on a network using static BGP, carriers cannot adjust network configurations in real time to ensure optimal user experience.	
	Dynamic BGP: When changes occur on a network using dynamic BGP, routing protocols provide automatic, real-time optimization of network configurations, ensuring network stability and optimal user experience.	

Parameter	Description	Example Value
Billed By	Specifies how the bandwidth will be billed.	Bandwidth
	You can select either of the following:	
	Bandwidth: You specify the maximum bandwidth and pay for the amount of time you use the bandwidth.	
	Traffic: You specify the maximum bandwidth and pay for the total traffic you use.	
Bandwidth	Specifies the maximum bandwidth when a new EIP is used, in Mbit/s.	10 Mbit/s

6. Configure other parameters about the load balancer as described in **Table 3-7**.

Table 3-7 Other parameters

Parameter	Description	Example Value
Name	Specifies the load balancer name.	elb-test
Enterprise Project	Selects an enterprise project by which cloud resources and members are centrally managed.	default
Advanced set	tings	
Description	Provides supplementary information about the load balancer.	-
Tag	Identifies load balancers so that they can be easily found. A tag consists of a tag key and a tag value. The tag key marks a tag, and the tag value specifies specific tag content. For details about the naming specifications, see Table 3-8. A maximum of 10 tags can be added.	Key: elb_key1Value: elb-01

Table 3-8 Tag naming rules

Parameter	Requirement	Example Value
Tag key	 Cannot be empty. Must be unique for the same load balancer. Can contain a maximum of 36 characters. Only letters, digits, hyphens (-), underscores (_), and Unicode characters from \u4e00 to \u9fff are allowed. 	elb_key1
Value	 Can contain a maximum of 43 characters. Only letters, digits, periods (.), hyphens (-), underscores (_), and Unicode characters from \u4e00 to \u9fff are allowed. 	elb-01

- 7. Click Create Now.
- 8. Confirm the configuration and submit your request.

3.5 Configuring Deletion Protection for Load Balancers

Scenarios

You can enable deletion protection for load balancers to prevent them from being deleted by accident.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. In the **Summary** tab, enable **Deletion Protection**.

◯ NOTE

Disable deletion protection before you delete a load balancer.

3.6 Modifying the Bandwidth

Scenario

If you set the **Network Type** of a load balancer to **Public IPv4 network** or **IPv6 network**, the load balancer can route requests over the Internet and you can modify the bandwidth used by the EIP bound to the load balancer as required.

- When changing bandwidth, you need to change the specifications of the dedicated load balancer to avoid speed limit due to insufficient bandwidth.
- The bandwidth of the EIP bound to the load balancer is the limit for traffic required by the clients to access the load balancer.

Modifying the Bandwidth

When you modify the bandwidth, traffic routing will not be interrupted.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click **More** in the **Operation** column.
- 5. Dedicated load balancers: Click **Modify IPv4 Bandwidth** or **Modify IPv6 Bandwidth**.
 - Shared load balancers: Click Modify IPv4 Bandwidth.
- 6. In the **New Configuration** area, modify the bandwidth and click **Next**. You can select the bandwidth defined by the system or customize the bandwidth. The bandwidth ranges from 1 Mbit/s to 1,000 Mbit/s.
- 7. Confirm the modified bandwidth and click **Submit**.

3.7 Changing the Specifications of a Dedicated Load Balancer

Scenario

This section guides you on how to change the specifications of a dedicated load balancer.

You can only change the specifications of dedicated load balancers.

Changing Specifications

Table 3-9 Changing the specifications

Load Balancin g Type	Upgradin g Specifica tions	Downgra ding Specifica tions	Description
Network load balancing (TCP/ UDP)	√	√	 The load balancing type cannot be changed after the load balancer is created. If you select the network load balancing (TCP/UDP), you can only add TCP or UDP listeners. If the specification is downgraded, new connections may not be able to be established.
Applicatio n load balancing (HTTP/ HTTPS)	√	√	 The load balancing type cannot be changed after the load balancer is created. If you select the application load balancing (HTTP/HTTPS), you can only add HTTP or HTTPS listeners. If the specification is downgraded, new connections may not be able to be established and some persistent connections may be interrupted.

□ NOTE

Downgrading specifications will temporarily affect services.

- Network load balancing (TCP/UDP): New connections may fail to establish.
- Application load balancing (HTTP/HTTPS): New connections may not be able to be established and some persistent connections may be interrupted.
- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. On the **Load Balancers** page, locate the load balancer whose specifications you want to modify, click **More** in the **Operation** column, and select **Change Specifications**.
- 5. Select the new specifications and click **Next**.
- 6. Confirm the information and click **Submit**.

3.8 Changing an IP Address

Scenarios

You can change the private IPv4 address bound to a load balancer into another IPv4 IP address in the current subnet or other subnets.

You can only change the IP address bound to a dedicated load balancer.

Changing a Private IPv4 Address

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer whose IP address you want to change, and click **More** > **Change Private IPv4 Address** in the **Operation** column.
- 5. In the **Change Private IPv4 Address** dialog box, select the subnet where the IP address resides and specify the IP address.
 - To use an IP address from another subnet, select Automatically assign
 IPv4 address. The system automatically assigns an IPv4 address for your load balancer.
 - To use another IP address from the current subnet, specify an IP address.
- 6. Click OK.

3.9 Binding an IP Address to or Unbinding an IP Address from a Load Balancer

Scenarios

You can bind an IP address to a load balancer or unbind the IP address from a load balancer based on service requirements.

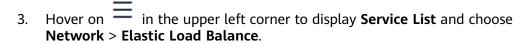
- An IPv6 address, IPv4 EIP, and private IPv4 address can be bound to or unbound from a dedicated load balancer.
- Only an IPv4 EIP can be bound to or unbound from a shared load balancer.

□ NOTE

- Load balancers without IPv4 EIPs cannot route requests over the public IPv4 network.
- Load balancers without private IPv4 addresses cannot route requests over the private IPv4 network.
- After an IPv6 address is unbound, the load balancer cannot route requests over the IPv6 network.

Binding an IPv4 EIP

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. On the **Load Balancers** page, locate the load balancer to which you want to bind an IPv4 EIP and click **More** > **Bind IPv4 EIP** in the **Operation** column.
- 5. In the **Bind IPv4 EIP** dialog box, select the EIP you want to bind to the load balancer.
- 6. Click OK.


Binding a Private IPv4 Address

Only dedicated load balancers support this function.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer to which you want to bind a private IPv4 address and click **More** > **Bind Private IPv4 Address** in the **Operation** column.
- 5. In the **Bind Private IPv4 Address** dialog box, select the subnet where the IP address resides and specify the IP address.
 - By default, the system automatically assigns an IP address. To manually specify an IP address, deselect **Automatically assign IP address** and enter the IP address.
 - Ensure that the entered IP address belongs to the selected subnet and is not in use.
- 6. Click **OK**.

Unbinding an IPv4 EIP

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.

- 4. On the **Load Balancers** page, locate the load balancer from which you want to unbind the IPv4 EIP and click **More** > **Unbind IPv4 EIP** in the **Operation** column.
- 5. In the displayed dialog box, confirm the IPv4 EIP that you want to unbind and click **Yes**.

∩ NOTE

After the IPv4 EIP is unbound, the load balancer cannot route requests over the Internet.

Unbinding a Private IPv4 Address

Only dedicated load balancers support this function.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer from which you want to unbind the private IPv4 address and click **More** > **Unbind Private IPv4 Address** in the **Operation** column.
- 5. In the displayed dialog box, confirm the private IPv4 address that you want to unbind and click **Yes**.

After the private IPv4 address is unbound, the load balancer cannot route requests over the private IPv4 network.

Unbinding an IPv6 Address

Only dedicated load balancers can have IPv6 addresses bound.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer from which you want to unbind the IPv6 address and click **More** > **Unbind IPv6 Address** in the **Operation** column.
- 5. In the displayed dialog box, confirm the IPv6 address that you want to unbind and click **Yes**.

After an IPv6 address is unbound, the load balancer cannot route requests over the IPv6 network.

3.10 Adding to or Removing from an IPv6 Shared Bandwidth

Scenarios

After you bind an IPv6 address to a dedicated load balancer, you can add the load balancer to a shared bandwidth to enable it to route requests over the Internet. After you are finished with the shared bandwidth, you can remove the load balancer from the shared bandwidth, so that it can only route requests within a VPC.

Adding to an IPv6 Shared Bandwidth

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer that you want to add to a shared bandwidth, and click **More** > **Add to IPv6 Shared Bandwidth** in the **Operation** column.
- In the Add to IPv6 Shared Bandwidth dialog box, select the shared bandwidth to which you want to add the dedicated load balancer.
 If no shared bandwidths are available, buy one as prompted.
- 6. Click OK.

Removing from an IPv6 Shared Bandwidth

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer that you want to remove from a shared bandwidth, and click **More** > **Remove from IPv6 Shared Bandwidth** in the **Operation** column.
- 5. In the displayed dialog box, confirm the shared bandwidth you want to remove.

□ NOTE

After the shared bandwidth is removed, the load balancer cannot route requests over the Internet.

6. Click Yes.

3.11 Exporting the Load Balancer List

Scenarios

You can export the load balancer list for backup.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the upper left corner of the load balancer list, click Export.

3.12 Deleting a Load Balancer

Scenarios

You can delete a load balancer if you do not need it any longer.

A deleted load balancer cannot be recovered.

After a public network load balancer is deleted, its EIP will not be released and can be used by other resources.

Prerequisites

Delete the resources configured for the load balancer in the following sequence:

- 1. Delete all the forwarding policies added to HTTP and HTTPS listeners of the load balancer.
- 2. Delete the redirect created for each HTTP listener of the load balancer.
- 3. Remove all the backend servers from the backend server groups associated with each listener of the load balancer.
- 4. Delete all the listeners added to the load balancer.
- 5. Delete all backend server groups associated with each listener of the load balancer.

Deleting a Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the target load balancer and choose **More** > **Delete** in the **Operation** column.
 - A confirmation dialog box is displayed. Select **Release the EIP** as required.
- 5. Click **Yes**.

4 Listener

4.1 Overview

You need to add at least one listener after you have created a load balancer. This listener receives requests from clients and routes requests to backend servers using the protocol, port, and load balancing algorithm you select.

Supported Protocols

ELB provides load balancing at both Layer 4 and Layer 7.

Select TCP or UDP for load balancing at Layer 4 and HTTP or HTTPS at Layer 7.

Table 4-1 Protocols supported by ELB

Protoco	l	Description	Application Scenario
Layer 4	ТСР	 Source IP address-based sticky sessions Fast data transfer 	 Scenarios that require high reliability and data accuracy, such as file transfer, email, and remote login Web applications that receive a large number of concurrent requests and require high performance
Layer 4	UDP	Low reliabilityFast data transfer	Scenarios that require quick response, such as video chat, gaming, and real-time financial quotations
Layer 7	НТТР	Cookie-based sticky sessionsX-Forward-For request header	Web applications where data content needs to be identified, such as mobile games

Protoco	l	Description	Application Scenario
Layer 7	HTTPS	An extension of HTTP for encrypted data transmission to prevent unauthorized access	Web applications that require encrypted transmission
		 Encryption and decryption performed on load balancers 	
		 Multiple versions of encryption protocols and cipher suites 	

4.2 Protocols and Ports

Frontend Protocols and Ports

Frontend protocols and ports are used by load balancers to receive requests from clients. Load balancers use TCP or UDP at Layer 4, and HTTP or HTTPS at Layer 7. Select a protocol and a port that best suit your requirements.

The selected frontend protocols and entered ports cannot be changed. If you want to change them, create another listener.

Table 4-2 Frontend protocols and ports

Protocol	Port
ТСР	There are some restrictions when you select the
UDP	protocols and port numbers. • For each load balancer, UDP can use the same
НТТР	ports as other protocols, but these other
HTTPS	protocols must have unique ports. For example, if you have a UDP listener that uses port 88, you can add a TCP, HTTP, or HTTPS listener that also uses port 88. However, if you already have an HTTP listener that uses port 443, you cannot add an HTTPS or TCP listener that uses the same port.
	 The port numbers of the same protocol must be unique. For example, if you have a TCP listener that uses port 80, you cannot add another TCP listener that uses the same port.
	The port number ranges from 1 to 65535.
	The following are some commonly-used protocols and port numbers:
	TCP/80
	HTTPS/443

Backend Protocols and Ports

Backend protocols and ports are used by backend servers to receive requests from load balancers. If Windows servers have Internet Information Services (IIS) installed, the default backend protocol and port are HTTP and 80.

Table 4-3 Backend protocols and ports

Protocol	Port	
ТСР	Backend servers can use the same ports. The port	
UDP	number ranges from 1 to 65535.	
001	The following are some commonly-used protocols	
QUIC	and port numbers:	
HTTP	TCP/80	
IIIIF	HTTP/80	
HTTPS	HTTPS/443	

4.3 Adding a TCP Listener

Scenarios

You can add a TCP listener, if high reliability and high accuracy are required but slow speed is acceptable, for example, during file transfer, email sending and receiving, and remote login.

Constraints

- If the listener protocol is TCP, the protocol of the backend server group is TCP by default and cannot be changed.
- If you only select application load balancing (HTTP/HTTPS) for your dedicated load balancer, you cannot add a TCP listener to this load balancer.

Adding a TCP Listener to a Dedicated Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-4**.

Table 4-4 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener-pnqy
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	ТСР
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients.	80
	The port number ranges from 1 to 65535.	

Parameter	Description	Example Value
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available: • All IP addresses • Blacklist • Whitelist	Blacklist
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup-b2
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers. This function is enabled for dedicated load balancers by default and cannot be disabled.	N/A
Advanced Settin		
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges	300
	from 10 to 4000 .	
Description	Provides supplementary information about the listener. You can enter a maximum of 255 characters.	N/A

6. Click **Next: Configure Request Routing Policy** to configure the backend server group. For details about how to configure a backend server group, see **Table 4-5**.

Table 4-5 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group
Backend Protocol	Specifies the protocol used by backend servers to receive requests. The backend protocol is TCP by default and cannot be changed.	ТСР

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE	
	Choose an appropriate algorithm based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. This parameter is optional and can be enabled if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session	Specifies the type of sticky sessions.	Source IP address
Type	Source IP address is the only choice available when TCP or UDP is used as the frontend protocol.	
	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all the endpoints are numbered. The system allocates the client to a particular endpoint based on the generated key. Requests from the same IP address are forwarded to the same backend server for processing.	
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1	20
	to 60Stickiness duration at Layer 7: 1 to 1440	
Description	Provides supplementary information about the backend server group.	N/A
	You can enter a maximum of 255 characters.	

7. Click **Next: Add Backend Server**. Add backend servers and configure the health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-6**.

Table 4-6 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks. If the health check is enabled, click next to Advanced Settings to set health check parameters.	N/A
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. If the backend protocol is TCP, the health check protocol can be TCP, HTTP, or HTTPS.	НТТР
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80

Parameter	Description	Example Value
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. The path can contain 1 to 80 characters and must start with a slash (/).	/index.html
	The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

Adding a TCP Listener to a Shared Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-7**.

Table 4-7 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener-pnqy

Parameter	Description	Example Value
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	TCP
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients. The port number ranges from 1 to 65535.	80
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available: • All IP addresses	Whitelist
	Blacklist	
	Whitelist	
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup-b2
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers. This parameter is available when the listener protocol is TCP or UDP.	N/A
Advanced Settin	gs	
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges from 10 to 4000.	300
Description	Provides supplementary information about the listener.	N/A
	You can enter a maximum of 255 characters.	

6. Click **Next: Configure Request Routing Policy**. **Table 4-8** describes the parameters for configuring a backend server group.

Table 4-8 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group-sq4v
Backend Protocol	Specifies the protocol used by backend servers to receive requests. The backend protocol is TCP by	ТСР
	default and cannot be changed.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: This algorithm is designed based on the least connections algorithm that uses the number of active connections to each backend server to make its load balancing decision. In addition to the number of connections, each server is assigned a weight based on its capacity. Requests are routed to the server with the lowest connections-to-weight ratio.	
	 Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key allocates the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously. NOTE Choose an appropriate algorithm based on your requirements for better traffic distribution. For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. NOTE You can enable sticky sessions only if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	Specifies the type of sticky sessions. Source IP address is the only choice available when TCP or UDP is used as the frontend protocol.	Source IP address
	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all the endpoints are numbered. The system allocates the client to a particular endpoint based on the generated key. Requests from the same IP address are forwarded to the same backend server for processing.	
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1 to 60 • Stickiness duration at Layer 7: 1 to 1440	20
Description	Provides supplementary information about the backend server group. You can enter a maximum of 255 characters.	N/A

7. Click **Next: Add Backend Server**. Add backend servers and configure the health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-9**.

Table 4-9 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks. If the health check is enabled,	N/A
	click next to Advanced Settings to set health check parameters.	
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. There are two options: TCP and HTTP.	НТТР
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP.	www.elb.com
	 You can use the private IP address of the backend server as the domain name. 	
	You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80

Parameter	Description	Example Value
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP. The path can contain 1 to 80 characters and must start with a slash (/).	/index.html
	The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

4.4 Adding a UDP Listener

Scenarios

UDP listeners are suitable for scenarios that focus more on timeliness than reliability, such as video chat, gaming, and real-time quotation in the financial market.

Constraints

- UDP listeners do not support fragmentation.
- The port of UDP listeners cannot be 4789.
- UDP packets can have any size less than 1,500 bytes. The packets will be discarded if they are too big. You need to modify the configuration files of the applications based on the maximum transmission unit (MTU) value.
- Dedicated load balancers: The backend protocol can be UDP or QUIC if the listener protocol is UDP.

- Shared load balancers: If the listener protocol is UDP, the protocol of the backend server group is UDP by default and cannot be changed.
- If you only select application load balancing (HTTP/HTTPS) for your dedicated load balancer, you cannot add a UDP listener to this load balancer.

Adding a UDP Listener to a Dedicated Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-10**.

Table 4-10 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	UDP
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients. The port number ranges from 1 to 65535.	80
Access Control	Specifies how access to the listener is controlled. For details, see Access Control . The following options are available:	Blacklist
	All IP addresses	
	Blacklist	
	Whitelist	
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup

Parameter	Description	Example Value
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers.	N/A
	This function is enabled for dedicated load balancers by default and cannot be disabled.	
Advanced Settin	gs	
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges from 10 to 4000.	300
Description	Provides supplementary information about the listener.	N/A
	You can enter a maximum of 255 characters.	

6. Click **Next: Configure Request Routing Policy** to configure the backend server group. **Table 4-11** describes the parameters for configuring a backend server group.

Table 4-11 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group

Parameter	Description	Example Value
Backend Protocol	Specifies the protocol that will be used by backend servers to receive requests.	UDP
	The backend protocol can be UDP or QUIC.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm that will be used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE Choose an appropriate algorithm	
	based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. This parameter is optional and can be enabled if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	Specifies the type of sticky sessions. Source IP address is the only choice available when TCP or UDP is used as the frontend protocol.	Source IP address
	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all the endpoints are numbered. The system allocates the client to a particular endpoint based on the generated key. Requests from the same IP address are forwarded to the same backend server for processing.	
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1	20
	to 60 • Stickiness duration at Layer 7: 1 to 1440	
Description	Provides supplementary information about the backend server group. You can enter a maximum of 255 characters.	N/A

7. Click **Next: Add Backend Server**. Add backend servers and configure the health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-12**.

Table 4-12 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	N/A
	If the health check is enabled, click next to Advanced Settings to set health check parameters.	
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. If the backend protocol is UDP, the health check protocol is UDP and cannot be changed.	UDP
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click **Next: Confirm**.
- 9. Confirm the configuration and click **Submit**.

Adding a UDP Listener to a Shared Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.

- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-13**.

Table 4-13 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	UDP
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients. The port number ranges from 1 to 65535.	80
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available: • All IP addresses • Blacklist • Whitelist	Whitelist
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers.	N/A
Advanced Settings		
Description	Provides supplementary information about the listener.	N/A
	You can enter a maximum of 255 characters.	

6. Click **Next: Configure Request Routing Policy**. **Table 4-14** describes the parameters for configuring a backend server group.

Table 4-14 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group
Backend Protocol	Specifies the protocol that will be used by backend servers to receive requests. The backend protocol is UDP by	UDP
	default and cannot be changed.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE	
	Choose an appropriate algorithm based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. NOTE You can enable sticky sessions only if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	Specifies the type of sticky sessions. Source IP address is the only choice available when TCP or UDP is used as the frontend protocol.	Source IP address
	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all the endpoints are numbered. The system allocates the client to a particular endpoint based on the generated key. Requests from the same IP address are forwarded to the same backend server for processing.	
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1 to 60 • Stickiness duration at Layer 7: 1 to 1440	20
Description	Provides supplementary information about the backend server group. You can enter a maximum of 255 characters.	N/A

7. Click **Next: Add Backend Server**. Add backend servers and configure health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-15**.

Table 4-15 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	N/A
	If the health check is enabled,	
	click next to Advanced Settings to set health check parameters.	
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. The health check protocol is UDP by default and cannot be changed.	UDP
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

4.5 Adding an HTTP Listener

Scenarios

HTTP listeners are suitable for applications that require identifying the data content, such as web applications and small mobile games.

Constraints

- If the listener protocol is HTTP, the protocol of the backend server group is HTTP by default and cannot be changed.
- If you only select network load balancing (TCP/UDP) for your dedicated load balancer, you cannot add an HTTP listener to this load balancer.

Adding an HTTP Listener to a Dedicated Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-16**.

Table 4-16 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	НТТР
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients. The port number ranges from 1 to 65535.	80
Redirect	Specifies whether to enable redirection. If you have both HTTPS and HTTP listeners, you can use this function to redirect the requests from the HTTP listener to the HTTPS listener to ensure security.	N/A
Redirected To	Specifies the HTTPS listener to which requests are redirected if Redirect is enabled.	listener_HTTPS_44 3

Parameter	Description	Example Value
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available: • All IP addresses • Blacklist • Whitelist	Blacklist
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers. This function is enabled for dedicated load balancers by default and cannot be disabled.	Enabled
Advanced Forwarding	Specifies whether to enable the advanced forwarding policy. You can add advanced forwarding policies to HTTP or HTTPS listeners to forward requests to different backend server groups based on HTTP request method, HTTP header, query string, or CIDR block in addition to domain names and URLs.	Enabled
Advanced Setting	js	
Transfer Listener Port Number	Specifies whether to store the port number used by the listener in the X-Forwarded-Port header field and pass the field to backend servers.	N/A
Transfer Port Number in the Request	Specifies whether to store the port number used by the client in the X-Forwarded-For-Port header field and pass the field to backend servers.	N/A

Parameter	Description	Example Value
Rewrite X- Forwarded-Host	 If you disable this option, the load balancer passes the X-Forwarded-Host field to backend servers. If you enable this option, the load balancer rewrites the X-Forwarded-Host field based on the Host field in the request header sent from the client and sends the rewritten X-Forwarded-Host field to backend servers. 	N/A
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges from 0 to 4000 .	60
Request Timeout	Specifies the length of time (in seconds) after which the load balancer closes the connection if the load balancer does not receive a request from the client. The request timeout duration ranges from 1 to 300.	60
Response Timeout	Specifies the length of time (in seconds) after which the load balancer sends a 504 Gateway Timeout error to the client if the load balancer receives no response from the backend server after routing a request to the backend server and receives no response after attempting to route the same request to other backend servers. The response timeout duration ranges from 1 to 300. NOTE	60
	If you have enabled sticky sessions and the backend server does not respond within the response timeout duration, the load balancer returns 504 Gateway Timeout to the clients.	

Parameter	Description	Example Value
Description	Provides supplementary information about the listener.	N/A
	You can enter a maximum of 255 characters.	

6. Click Next: Configure Request Routing Policy.

- a. You are advised to select an existing backend server group.
- b. You can also click **Create new** to create a backend server group and configure parameters as described in **Table 4-17**.

Table 4-17 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group
Backend Protocol	Specifies the protocol that will be used by backend servers to receive requests.	НТТР
	The backend protocol is HTTP by default and cannot be changed.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm that will be used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE	
	 Choose an appropriate algorithm based on your requirements for better traffic distribution. 	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. This parameter is optional and can be enabled if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	Specifies the type of sticky sessions for HTTP and HTTPS listeners. • Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the same cookie are then routed to the same backend server. NOTE	Load balancer cookie
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1 to 60 • Stickiness duration at Layer 7: 1 to 1440	20
Slow Start	Specifies whether to enable slow start, which is disabled by default. After you enable slow start, the load balancer linearly increases the proportion of requests to send to backend servers in this mode. When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode. For details, see Slow Start (Dedicated Load Balancers).	N/A

Parameter	Description	Example Value
Slow Start Duration	Specifies the slow start duration if Slow Start is enabled.	30
	The duration ranges from 30 to 1200 , in seconds, and the default value is 30 .	
Description	Provides supplementary information about the backend server group.	N/A
	You can enter a maximum of 255 characters.	

7. Click **Next: Add Backend Server**. Add backend servers and configure health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-18**.

Table 4-18 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	N/A
	If the health check is enabled, click next to Advanced Settings to set health check parameters.	
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers.	НТТР
	If the backend protocol is HTTP or HTTPS, the health check protocol can be TCP, HTTP, or HTTPS.	

Parameter	Description	Example Value
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. The path can contain 1 to 80 characters and must start with a slash (/). The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	/index.html
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3

Parameter	Description	Example Value
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

Adding an HTTP Listener to a Shared Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-19**.

Table 4-19 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	НТТР
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients.	80
	The port number ranges from 1 to 65535.	
Redirect	Specifies whether to enable redirection.	N/A
	Redirects requests to an HTTPS listener when HTTP is used as the frontend protocol. If you have both HTTPS and HTTP listeners, you can use this function to redirect the requests from the HTTP listener to the HTTPS listener to ensure security.	
Redirected To	Specifies the HTTPS listener to which requests are redirected.	listener-9ecd (HTTPS/443)

Parameter	Description	Example Value
Advanced Settings		
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available: • All IP addresses • Blacklist • Whitelist	Whitelist
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup-b2
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges	60
	from 0 to 4000 .	
Request Timeout	Specifies the length of time (in seconds) after which the load balancer closes the connection if the load balancer does not receive a request from the client. The request timeout duration	60
	ranges from 1 to 300 .	

Parameter	Description	Example Value
Response Timeout	A load balancer sends a request to a backend server. If the backend server does not respond within the timeout period, the load balancer sends the request to another backend server. If the backend server does not respond during the retry, the load balancer returns error code HTTP 504 to the client.	60
	The request timeout duration ranges from 1 to 300.	
	NOTE If you have enabled sticky sessions and the backend server does not respond within the response timeout duration, the load balancer returns 504 Gateway Timeout to the clients.	
Description	Provides supplementary information about the listener.	N/A
	You can enter a maximum of 255 characters.	

6. Click **Next: Configure Request Routing Policy**. **Table 4-20** describes the parameters for configuring a backend server group.

Table 4-20 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	• Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group

Parameter	Description	Example Value
Backend Protocol	Specifies the protocol that will be used by backend servers to receive requests.	НТТР
	The backend protocol is HTTP by default and cannot be changed.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm that will be used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	Choose an appropriate algorithm based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. NOTE You can enable sticky sessions only if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	 Specifies the type of sticky sessions for HTTP and HTTPS listeners. Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the same cookie are then routed to the same backend server. Application cookie: The application deployed on the backend server generates a cookie after receiving the first request from the client. All requests with the same cookie generated by backend application are then routed to the same backend server. 	Load balancer cookie
Cookie Name	Specifies the cookie name. If you select Application cookie , enter a cookie name.	cookieName-qsps
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1 to 60 • Stickiness duration at Layer 7: 1 to 1440	20
Description	Provides supplementary information about the backend server group. You can enter a maximum of 255 characters.	N/A

7. Click **Next: Add Backend Server**. Add backend servers and configure health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-21**.

Table 4-21 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks. If the health check is enabled, click next to Advanced Settings to set health check parameters.	N/A
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. There are two options: TCP and HTTP.	НТТР
Domain Name	 Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP. You can use the private IP address of the backend server as the domain name. You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters. 	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80

Parameter	Description	Example Value
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP. The path can contain 1 to 80 characters and must start with a slash (/).	/index.html
	The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click **Next: Confirm**.
- 9. Confirm the configuration and click **Submit**.

4.6 Adding an HTTPS Listener

Scenarios

HTTPS listeners are best suited for applications that require encrypted transmission. Load balancers decrypt HTTPS requests before routing them to backend servers, which then send the processed requests back to load balancers for encryption before they are sent to clients.

Constraints

- Dedicated load balancers: If the listener protocol is HTTPS, the protocol of the backend server group can be HTTP or HTTPS.
- Shared load balancers: If the listener protocol is HTTPS, the protocol of the backend server group is HTTP by default and cannot be changed.
- If you only select network load balancing (TCP/UDP) for your dedicated load balancer, you cannot add an HTTPS listener to this load balancer.

Adding an HTTPS Listener to a Dedicated Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-22**.

Table 4-22 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener-pnqy
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	HTTPS
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients.	80
	The port number ranges from 1 to 65535.	
SSL Authentication	Specifies whether how you want the clients and backend servers to be authenticated.	One-way authentication
	There are two options: One-way authentication or Mutual authentication.	
	 If only server authentication is required, select One-way authentication. 	
	If you want the clients and the load balancer to authenticate each other, select Mutual authentication. Only authenticated clients will be allowed to access the load balancer.	

Parameter	Description	Example Value
Server Certificate	Specifies the certificate that will be used by the backend server to authenticate the client when HTTPS is used as the frontend protocol. Both the certificate and private key are required. For details, see Adding, Modifying, or Deleting a Certificate.	N/A
CA Certificate	Specifies the certificate that will be used by the backend server to authenticate the client when SSL Authentication is set to Mutual authentication. A CA certificate is issued by a certificate authority (CA) and used to verify the certificate issuer. If HTTPS mutual authentication is required, HTTPS connections can be established only when the client provides a certificate issued by a specific CA. For details, see Adding, Modifying, or Deleting a Certificate.	N/A
Enable SNI	Specifies whether to enable SNI when HTTPS is used as the frontend protocol. SNI is an extension to TLS and is used when a server uses multiple domain names and certificates. This allows the client to submit the domain name information while sending an SSL handshake request. After the load balancer receives the request, the load balancer queries the corresponding certificate based on the domain name and returns it to the client. If no certificate is found, the load balancer will return the default certificate. For details, see SNI Certificate.	N/A

Parameter	Description	Example Value	
SNI Certificate	Specifies the certificate associated with the domain name when the frontend protocol is HTTPS and SNI is enabled.	N/A	
	Select an existing certificate or create one.		
	For details, see Adding, Modifying, or Deleting a Certificate.		
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available:	Whitelist	
	All IP addresses		
	Blacklist		
	Whitelist		
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup-b2	
Transfer Client IP Address	Specifies whether to transmit IP addresses of the clients to backend servers.	Enabled	
	This function is enabled for dedicated load balancers by default and cannot be disabled.		
Advanced Forwarding	Specifies whether to enable the advanced forwarding policy. You can add advanced forwarding policies to HTTP or HTTPS listeners to forward requests to different backend server groups based on HTTP request method, HTTP header, query string, or CIDR block in addition to domain names and URLs.	Enabled	
Advanced Settings			
Security Policy	Specifies the security policy you can use if you select HTTPS as the frontend protocol. For more information, see TLS Security Policy.	TLS-1-0	

Parameter	Description	Example Value
HTTP/2	Specifies whether you want to use HTTP/2 if you select HTTPS for Frontend Protocol . For details, see HTTP/2 .	N/A
Transfer Load Balancer EIP	Specifies whether to store the EIP bound to the load balancer in the X-Forwarded-ELB-IP header field and pass this field to backend servers.	N/A
Transfer Listener Port Number	Specifies whether to store the port number used by the listener in the X-Forwarded-Port header field and pass the field to backend servers.	N/A
Transfer Port Number in the Request	Specifies whether to store the port number used by the client in the X-Forwarded-For-Port header field and pass the field to backend servers.	N/A
Rewrite X- Forwarded- Host	 If you disable this option, the load balancer passes the X-Forwarded-Host field to backend servers. If you enable this option, the load balancer rewrites the X-Forwarded-Host field based on the Host field in the request header sent from the client and sends the rewritten X-Forwarded-Host field to backend servers. 	N/A
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges from 0 to 4000 .	60

Parameter	Description	Example Value
Request Timeout	Specifies the length of time (in seconds) after which the load balancer closes the connection if the load balancer does not receive a request from the client. The request timeout duration ranges from 1 to 300.	60
Response Timeout	Specifies the length of time (in seconds) after which the load balancer sends a 504 Gateway Timeout error to the client if the load balancer receives no response from the backend server after routing a request to the backend server and receives no response after attempting to route the same request to other backend servers.	60
	The request timeout duration ranges from 1 to 300 .	
	NOTE If you have enabled sticky sessions and the backend server does not respond within the response timeout duration, the load balancer returns 504 Gateway Timeout to the clients.	
Description	Provides supplementary information about the listener. You can enter a maximum of 255 characters.	N/A

6. Click Next: Configure Request Routing Policy.

- a. You are advised to select an existing backend server group.
- b. You can also click **Create new** to create a backend server group and configure parameters as described in **Table 4-23**.

Table 4-23 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group-sq4v
Backend Protocol	Specifies the protocol that will be used by backend servers to receive requests.	НТТР
	If the frontend protocol is HTTPS, the backend protocol can be HTTP, or HTTPS.	

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm that will be used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE Choose an appropriate algorithm	
	based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server.	N/A
	This parameter is optional and can be enabled if you have selected Weighted round robin for Load Balancing Algorithm.	
Sticky Session Type	Specifies the type of sticky sessions for HTTP and HTTPS listeners.	Load balancer cookie
	Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the same cookie are then routed to the same backend server. NOTE	
Stickiness	Specifies the minutes that sticky	20
Duration (min)	sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm.	
	• Stickiness duration at Layer 4: 1 to 60	
	 Stickiness duration at Layer 7: 1 to 1440 	
Slow Start	Specifies whether to enable slow start, which is disabled by default.	N/A
	After you enable slow start, the load balancer linearly increases the proportion of requests to send to backend servers in this mode. When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode.	
	For details, see Slow Start (Dedicated Load Balancers).	

Parameter	Description	Example Value
Slow Start Duration	Specifies how long the slow start will last.	30
	The duration ranges from 30 to 1200 , in seconds, and the default value is 30 .	
Description	Provides supplementary information about the backend server group.	N/A
	You can enter a maximum of 255 characters.	

7. Click **Next: Add Backend Server**. Add backend servers and configure health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-24**.

Table 4-24 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	N/A
	If the health check is enabled, click next to Advanced Settings to set health check parameters.	
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers.	НТТР
	If the backend protocol is HTTP or HTTPS, the health check protocol can be TCP, HTTP, or HTTPS.	

Parameter	Description	Example Value
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. The path can contain 1 to 80 characters and must start with a slash (/). The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	/index.html
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3

Parameter	Description	Example Value
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

Adding an HTTPS Listener to a Shared Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under **Listeners**, click **Add Listener**. Configure the parameters based on **Table 4-25**.

Table 4-25 Parameters for configuring a listener

Parameter	Description	Example Value
Name	Specifies the listener name.	listener-pnqy
Frontend Protocol	Specifies the protocol that will be used by the load balancer to receive requests from clients.	HTTPS
Frontend Port	Specifies the port that will be used by the load balancer to receive requests from clients.	80
	The port number ranges from 1 to 65535.	

Parameter	Description	Example Value
SSL Authentication	Specifies whether how you want the clients and backend servers to be authenticated.	One-way authentication
	There are two options: One-way authentication or Mutual authentication.	
	 If only server authentication is required, select One-way authentication. 	
	If you want the clients and the load balancer to authenticate each other, select Mutual authentication. Only authenticated clients will be allowed to access the load balancer.	
CA Certificate	Specifies the certificate that allows the clients and backend servers to mutually authenticate each other.	N/A
	For details, see Adding, Modifying, or Deleting a Certificate.	
Server Certificate	Specifies the certificate used by the server to authenticate the client when HTTPS is used as the frontend protocol.	N/A
	Both the certificate and private key are required.	
	For details, see Adding, Modifying, or Deleting a Certificate.	

Parameter	Description	Example Value
Enable SNI	Specifies whether to enable SNI when HTTPS is used as the frontend protocol.	N/A
	SNI is an extension to TLS and is used when a server uses multiple domain names and certificates.	
	This allows the client to submit the domain name information while sending an SSL handshake request. After the load balancer receives the request, the load balancer queries the corresponding certificate based on the domain name and returns it to the client. If no certificate is found, the load balancer will return the default certificate. For details, see SNI Certificate.	
SNI Certificate	Specifies the certificate associated with the domain name when the frontend protocol is HTTPS and SNI is enabled.	N/A
	Select an existing certificate or create one.	
	For details, see Adding, Modifying, or Deleting a Certificate.	
Advanced Settings		
Access Control	Specifies how access to the listener is controlled. For details, see Access Control. The following options are available:	Whitelist
	All IP addressesBlacklist	
	Whitelist	
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see Creating an IP Address Group.	ipGroup-b2

Parameter	Description	Example Value
HTTP/2	Specifies whether you want to use HTTP/2 if you select HTTPS for Frontend Protocol. For details, see HTTP/2.	N/A
Security Policy	Specifies the security policy you can use if you select HTTPS as the frontend protocol. There are four options. For more information, see TLS Security Policy.	TLS-1-2
Idle Timeout	Specifies the length of time for a connection to keep alive, in seconds. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives. The idle timeout duration ranges from 0 to 4000 .	60
Request Timeout	Specifies the length of time (in seconds) after which the load balancer closes the connection if the load balancer does not receive a request from the client. The request timeout duration ranges from 1 to 300.	60
Response Timeout	Specifies the length of time (in seconds) after which the load balancer sends a 504 Gateway Timeout error to the client if the load balancer receives no response from the backend server after routing a request to the backend server and receives no response after attempting to route the same request to other backend servers. The request timeout duration ranges from 1 to 300. NOTE If you have enabled sticky sessions and the backend server does not respond within the response timeout duration, the load balancer returns 504 Gateway Timeout to the clients.	60

Parameter	Description	Example Value
Description	Provides supplementary information about the listener. You can enter a maximum of 255 characters.	N/A

6. Click **Next: Configure Request Routing Policy**. **Table 4-26** describes the parameters for configuring a backend server group.

Table 4-26 Parameters for configuring a backend server group

Parameter	Description	Example Value
Backend Server Group	Specifies a group of servers with the same features to receive requests from the load balancer. Two options are available:	Create new
	Create new	
	Use existing	
	NOTE To associate an existing backend server group, ensure that it is not in use. The backend protocol of the backend server group must match the frontend protocol. For example, if the frontend protocol is TCP, the backend protocol must be TCP.	
Backend Server Group Name	Specifies the name of the backend server group.	server_group-sq4v
Backend Protocol	Specifies the protocol used by backend servers to receive requests. The backend protocol is HTTP by default and cannot be changed.	НТТР

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights, which indicate server processing performance. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hash key, and all backend servers are numbered. The generated key is used to allocate the client to a particular server. This allows requests from different clients to be routed based on source IP addresses and ensures that a client is directed to the same server that it was using previously.	
	NOTE	
	Choose an appropriate algorithm based on your requirements for better traffic distribution.	
	 For Weighted round robin or Weighted least connections, no requests will be routed to a server with a weight of 0. 	

Parameter	Description	Example Value
Sticky Session	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from a client during one session are sent to the same backend server. NOTE You can enable sticky sessions only if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	N/A
Sticky Session Type	 Specifies the type of sticky sessions for HTTP and HTTPS listeners. Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the same cookie are then routed to the same backend server. Application cookie: The application deployed on the backend server generates a cookie after receiving the first request from the client. All requests with the same cookie generated by backend application are then routed to the same backend server. 	Load balancer cookie
Cookie Name	Specifies the cookie name. If you select Application cookie , enter a cookie name.	cookieName-qsps
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. You can enable sticky sessions only if you select Weighted round robin or Weighted least connections for Load Balancing Algorithm. • Stickiness duration at Layer 4: 1 to 60 • Stickiness duration at Layer 7: 1 to 1440	20
Description	Provides supplementary information about the backend server group. You can enter a maximum of 255 characters.	N/A

7. Click **Next: Add Backend Server**. Add backend servers and configure health check for the backend server group. For details about how to add backend servers, see **Overview**. For the parameters required for configuring a health check, see **Table 4-27**.

Table 4-27 Parameters for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks. If the health check is enabled, click next to Advanced Settings to set health check parameters.	N/A
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. There are two options: TCP and HTTP.	НТТР
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80

Parameter	Description	Example Value
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP. The path can contain 1 to 80 characters and must start with a slash (/).	/index.html
	The path can contain letters, digits, hyphens (-), slashes (/), periods (.), question marks (?), percent signs (%), ampersands (&), and underscores (_).	
Interval (s)	Specifies the interval for sending health check requests, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The timeout duration ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next: Confirm.
- 9. Confirm the configuration and click **Submit**.

4.7 Adding a UDP Listener (with a QUIC Backend Server Group Associated)

Scenarios

If you use UDP as the frontend protocol, you can select QUIC as the backend protocol and select the connection ID to route requests with the same connection ID to the same backend server. QUIC has the advantages of low latency, high reliability, and no head-of-line blocking (HOL blocking), and is very suitable for the mobile Internet. No new connections need to be established when you switch between a Wi-Fi and a mobile data network.

- QUIC versions include Q043, Q046, and Q050.
- UDP listeners using QUIC as backend protocol do not support fragmentation.

Constraints and Limitations

- Only dedicated load balancers support the QUIC protocol.
- You can add only UDP listeners if you want to use QUIC as the backend protocol.

Adding a UDP Listener with a QUIC Backend Server Group Associated

- Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
 - Select **Network load balancing (TCP/UDP)** and select a specification for the load balancer.
- 5. Under **Listeners**, click **Add Listener**.
- 6. In the **Configure Listener** step, set **Frontend Protocol** to **UDP**, configure other parameters based on the site requirements, and click **Next: Configure Request Routing Policy**.
- 7. In the **Configure Routing Policy** step, set **Backend Protocol** to **QUIC** and configure other parameters as required.
- 8. Configure the parameters and click **Submit.**

4.8 Configuring Timeout Durations

Scenarios

You can configure timeout durations (idle timeout, request timeout, and response timeout) for your listeners to meet varied demands. For example, if the size of a request from an HTTP or HTTPS client is large, you can increase the request timeout duration to ensure that the request can be successfully routed.

For shared load balancers, you can only change the timeout durations of TCP, HTTP, and HTTPS listeners, but cannot change the timeout durations of UDP listeners.

For dedicated load balancers, you can change the timeout durations of TCP, UDP, HTTP, and HTTPS listeners.

Figure 4-1 Timeout durations at Layer 7

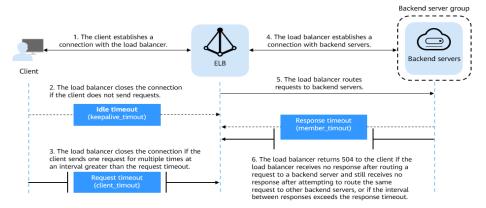


Figure 4-2 Timeout durations at Layer 4

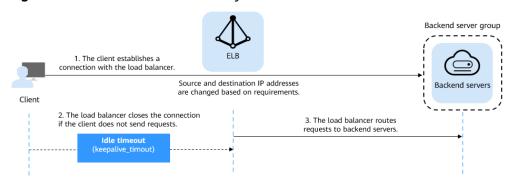


Table 4-28 Timeout durations

Protocol	Туре	Description	Value Range	Default Timeout Duration
TCP	Idle Timeout	Duration for a	10-4000s	300s
UDP HTTP/ HTTPS	Idle Timeout Idle Timeout	connection to be kept alive. If no request is received within this period, the load balancer closes the connection and establishes a new one with the client when the next request arrives.	10-4000s 10-4000s	Shared load balancers: 10s Dedicated load balancers: 300s
	Request Timeout	Duration after which the load balancer closes the connection with the client if the load balancer does not receive a request from the client.	10-300s	60s

Protocol	Туре	Description	Value Range	Default Timeout Duration
	Response Timeout	Duration after which the load balancer sends a 504 Gateway Timeout error to the client if the load balancer receives no response after routing a request to a backend server and receives no response after attempting to route the same request to other backend servers. NOTE If sticky sessions are enabled and the backend server does not respond within the response timeout duration, the load balancer returns the 504 error code without attempting to route the same request to other backend servers.	1-300s	60s

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click the name of the listener.
- 6. On the **Summary** tab page, click **Edit** on the top right.
- 7. In the **Edit** dialog box, expand **Advanced Settings**.
- 8. Configure Idle Timeout (s), Request Timeout (s), or Response Timeout (s) as you need.
- 9. Click **OK**.

4.9 Modifying or Deleting a Listener

Scenarios

You can modify a listener as needed or delete a listener if you no longer need it. Deleted listeners cannot be recovered.

∩ NOTE

Frontend Protocol/Port and **Backend Protocol** cannot be modified after you have configured them. If you want to modify the protocol or port of the listener, add another listener to the load balancer.

Modifying a listener

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Modify the listener in either of the following ways:
 - On the Listeners page, locate the listener, and click Edit in the Operation column.
 - Click the name of the target listener. On the Summary tab page, click
 Edit on the top right corner.
- 6. On the **Edit** dialog box, modify parameters, and click **OK**.

Deleting a Listener

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.

□ NOTE

- If the listener has backend servers associated, disassociate the backend servers before deleting the listener.
- If HTTP requests are redirected to an HTTPS listener, delete the redirect before deleting the HTTPS listener.
- If the listener has a forwarding policy, delete the forwarding policy before deleting the listener.
- After a listener is deleted, the associated backend server group is also deleted.

- 5. Click **Listeners**, locate the listener, and click $\overline{\mathbb{U}}$ on the right of its name.
- 6. Click Yes.

4.10 Transfer Client IP Address

Scenarios

Generally, load balancers use IP addresses in 100.125.0.0/16 and 100.126.0.0/16 to communicate with backend servers. If you want a load balancer to communicate with backend servers using real IP addresses of the clients, you can enable **Transfer Client IP Address** to pass the IP addresses of the clients to backend servers.

□ NOTE

- Shared load balancers: This function is available only for TCP and UDP listeners.
- Dedicated load balancers: This function is enabled for TCP and UDP listeners by default and cannot be disabled.
- For HTTP and HTTPS listeners, if you want to obtain the IP addresses of clients, refer to "Layer 7 Load Balancing" in **How Can I Transfer the IP Address of a Client?**

Constraints and Limitations

When you enable or disable the function, if the listener has backend servers associated, traffic to this listener will be interrupted for about 10 seconds. The interruption duration is twice the health check interval configured for the backend server group.

Enabling the Function

<u>A</u> CAUTION

- Xen ECSs do not support this function.
- BMSs do not support this function.
- After this function is enabled, traffic, such as unidirectional download or push traffic, may be interrupted when backend servers are being migrated. After backend servers are migrated, retransmit the packets to restore the traffic.
- After this function is enabled, the associated backend servers cannot be used as clients to access the listener.
- If a backend server has been associated with the listener and health checks are enabled, enabling this function will check the health of the backend server, and traffic to this server will be interrupted for one or two health check intervals.
- 1. Perform the following steps to enable the function:
 - a. Log in to the management console.
 - b. In the upper left corner of the page, click and select the desired region and project.

- c. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- d. On the **Load Balancers** page, click the name of the load balancer.
- e. Click Listeners.
 - To add a listener, click **Add Listener**.
 - To modify a listener, identify the row where the target listener is located, and click **Edit** in **Operation** column.
- f. Enable Transfer Client IP Address.
- 2. Configure security groups, network ACLs, OS, and software security policies so that IP addresses of the clients can access these backend servers.

If **Transfer Client IP Address** is enabled, a server cannot serve as both a backend server and a client. If the client and the backend server use the same server and the **Transfer Client IP Address** option is enabled, the backend server will think the packet from the client is sent by itself and will not return a response packet to the load balancer. As a result, the return traffic will be interrupted.

Disabling the Function

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click the name of the listener.
- 6. On the **Summary** tab page, click **Edit** on the top right.
- 7. Disable Transfer Client IP Address.
- 8. Confirm the configuration and click **Finish**.
- 9. Confirm the configuration and click **OK**.

5 Advanced Features of HTTP/HTTPS Listeners

5.1 Forwarding Policy (Shared Load Balancers)

Scenarios

You can add forwarding policies to HTTP or HTTPS listeners to forward requests to different backend server groups based on domain names or URLs.

This is suited for applications that are deployed on multiple backend servers and provide multiple types of services such as videos, images, audios, and texts.

A forwarding policy consists of a forwarding rule and an action.

- There are two types of forwarding rules: domain name and URL.
- HTTP listeners can forward requests to a backend server group and redirect requests to another listener.
- HTTPS listeners can forward requests to a backend server group.

How Requests Are Matched

- After you add a forwarding policy, the load balancer forwards requests based on the specified domain name or URL:
 - If the domain name or URL in a request matches that specified in the forwarding policy, the request is forwarded to the backend server group you select or create when you add the forwarding policy.
 - If the domain name or URL in a request does not match that specified in the forwarding policy, the request is forwarded to the default backend server group of the listener.
- Matching priority:
 - Forwarding policy priorities are independent of each other regardless of domain names. If a forwarding rule uses both domain names and URLs, requests are matched based on domain names first.

 If the forwarding rule is a URL, the priorities follow the order of exact match, prefix match, and regular expression match. If the matching types are the same, the longer the URL length, the higher the priority.

Table 5-1 Example forwarding policies

Request	Forwardi ng Policy	Forwarding Rule	Specified Value
www.elb.com/	1	URL	/test
test	2	Domain name	www.elb.com

□ NOTE

In this example, request **www.elb.com/test** matches both forwarding policies 1 and 2, but is routed based on forwarding policy 2.

Constraints and Limitations

- Forwarding policies can be added only to HTTP and HTTPS listeners.
- Forwarding policies must be unique.
- A maximum of 100 forwarding policies can be configured for a listener. If the number of forwarding policies exceeds the quota, the excess forwarding policies will not be applied.
- When you add a forwarding policy, note the following:
 - Each URL path must exist on the backend server. If the path does not exist, the backend server will return 404 Not Found.
 - In the regular expression match, the characters are matched sequentially, and matching ends when any rule is successfully matched. Matching rules cannot overlap with each other.
 - A URL path cannot be configured for two forwarding policies.
 - A domain name cannot exceed 100 characters.

A CAUTION

If you add a forwarding policy that is the same as an existing one by calling APIs, there will be a conflict. Even if you delete the existing forwarding policy, the new forwarding policy is still faulty. Delete the newly-added forwarding policy and add a different one.

Adding a Forwarding Policy

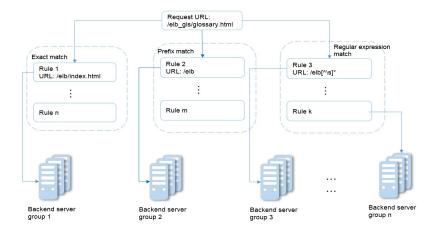
- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. On the **Listeners** tab page, add a forwarding policy in either of the following ways:
 - On the Listeners page, locate the listener, and click Add/Edit Forwarding Policy in the Forwarding Policies column.
 - Locate the target listener, click its name, and click **Forwarding Policies**.
- 6. Click Add Forwarding Policy. Configure the parameters based on Table 5-2.
- 7. After the configuration is complete, click **Save**.

Table 5-2 Forwarding policy parameters

Parameter		Description	Example Value
Forwarding Rule	Dom ain nam e	Specifies the domain name used for forwarding requests. The domain name in the request must exactly match that in the forwarding policy. You need to specify either a domain name or URL.	www.test.com
	URL	Specifies the URL used for forwarding requests. There are three URL matching rules: • Exact match The request URL must exactly match that specified in the forwarding policy. • Prefix match The requested URL starts with the specified URL string. • Regular expression match The requested URL matches the specified URL string based on the regular expression.	/login.php
Action	Forw ard to a back end serve r grou p	If the request matches the configured forwarding rule, the request is forwarded to the specified backend server group.	Forward to a backend server group

Parameter		Description	Example Value
	Redir ect to anot her listen er	If the request matches the configured forwarding rule, the request is redirected to the specified HTTPS listener. This action can be configured only for HTTP listeners. NOTE If you select Redirect to another listener and create a redirect for the current listener, this listener will redirect the requests to the specified HTTPS listener, but access control configured for the listener will still take effect. For example, if you configure a redirect for an HTTP listener, HTTP requests to access a web page will be redirected to the HTTPS listener you select and handled by the backend servers associated with the HTTPS listener. As a result, the clients access the web page over HTTPS. The configuration of the HTTP listener will become invalid.	N/A
Backend Serve Group	er	Select a backend server group that will receive requests from the load balancer. This parameter is mandatory when you set Action to Forward to a backend server group.	N/A
Listener		Select an HTTPS listener that will receive requests redirected from the current HTTP listener. This parameter is mandatory when Action is set to Redirect to another listener.	N/A


URL Matching Example

The following table lists how a URL is matched, and **Figure 5-1** shows how a request is forwarded to a backend server group.

URL URL URL in the Forwarding Policy Matching Rule /elb[^\s]* N/A N/A /elb/ /elb index.html index.html /elb/ N/A Exact N/A N/A match index.html √ Prefix √ N/A N/A match √ Regular N/A N/A expression match

Table 5-3 URL matching

Figure 5-1 Request forwarding

In this figure, the system first searches for an exact match of the requested URL (/ elb_gls/glossary.html). If there is no exact match, the system searches for a prefix match. If a match is found, the request is forwarded to backend server group 2 even if a regular expression match is also found, because the prefix match has a higher priority.

Modifying a Forwarding Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.

- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, select the forwarding policy, and click **Edit**.
- 7. Modify the parameters and click **Save**.

Deleting a Forwarding Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, select the forwarding policy, and click **Delete** on the top right.
- 7. In the displayed dialog box, click **Yes**.

5.2 Forwarding Policy (Dedicated Load Balancers)

Overview

You can add forwarding policies to HTTP or HTTPS listeners to forward requests to different backend server groups based on domain names or URLs.

A forwarding policy consists of one or more forwarding rules and an action. For details, see **Table 5-4**.

Table 5-4 Rules and actions supported by a forwarding policy

Policy Type	Forwarding Rules	Actions
Forwarding policy	Domain name and URL	Forward to another backend server group and Redirect to another listener (only for HTTP listeners)
Advanced forwarding policy	Domain name, URL, HTTP request method, HTTP header, query string, and CIDR block	The following actions are supported: forward to a backend server group, redirect to another listener, redirect to another URL, and return a specific response body.

◯ NOTE

You can configure an advanced forwarding policy by referring to **Managing an Advanced Forwarding Policy**.

How Requests Are Matched

- After you add a forwarding policy, the load balancer forwards requests based on the specified domain name or URL:
 - If the domain name or URL in a request matches that specified in the forwarding policy, the request is forwarded to the backend server group you create or select when you add the forwarding policy.
 - If the domain name or URL in a request does not match that specified in the forwarding policy, the request is forwarded to the default backend server group of the listener.
- Matching priority:
 - Forwarding policy priorities are independent of each other regardless of domain names. If a forwarding rule uses both domain names and URLs, requests are matched based on domain names first.
 - If the forwarding rule is a URL, the priorities follow the order of exact match, prefix match, and regular expression match. If the matching types are the same, the longer the URL length, the higher the priority.

Table 5-5 Example forwarding policies

Request	Forwardi ng policy	Forwarding Rule	Specified Value
www.elb.com/ test	1	URL	/test
	2	Domain name	www.elb.com

Ⅲ NOTE

In this example, request **www.elb.com/test** matches both forwarding policies 1 and 2, but is routed based on forwarding policy 2.

Notes and Constraints

- You can add forwarding policies to HTTP and HTTPS listeners.
- Forwarding policies must be unique.
- A maximum of 100 forwarding policies can be configured for a listener. If the number of forwarding policies exceeds the quota, the excess forwarding policies will not be applied.
- When you add a forwarding policy, note the following:
 - Each URL path must exist on the backend server. Otherwise, the backend server returns 404 when you access the backend server.
 - In the regular expression match, the rules are matched sequentially, and matching ends when any rule is successfully matched. Matching rules cannot overlap with each other.
 - A URL path cannot be configured for two forwarding policies.
 - A domain name cannot exceed 100 characters.

Adding a Forwarding Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. On the **Listeners** tab page, add a forwarding policy in either of the following ways:
 - Click Add/Edit Forwarding Policy in the Forwarding Policies column.
 - Locate the target listener, click its name, and click Forwarding Policies.
- 6. Click **Add Forwarding Policy**. Configure the parameters based on **Table 5-6**.

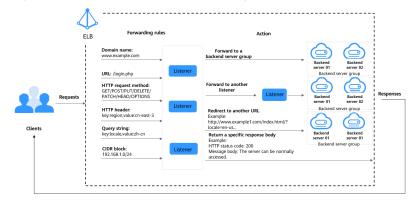
Table 5-6 Forwarding policy parameters

Parame ter	Туре	Description	Example Value
Forward ing Rule	Domain name	Specifies the domain name used for forwarding requests. The domain name in the request must exactly match that in the forwarding policy. You need to specify either a domain name or URL.	www.test.com
	URL	Specifies the URL used for forwarding requests. There are three URL matching rules: • Exact match: The request URL must exactly match that specified in the forwarding policy. • Prefix match: The requested URL starts with the specified URL string. • Regular expression match: The URLs are matched using a regular expression.	/login.php
Action	Forward to a backend server group	If the request matches the configured forwarding rule, the request is forwarded to the specified backend server group.	-

Parame ter	Туре	Description	Example Value
	Redirect to another listener	If the request matches the configured forwarding rule, the request is redirected to the specified HTTPS listener.	-
		This action can be configured only for HTTP listeners.	
		NOTE If you select Redirect to another listener, the HTTP listener will redirect requests to the specified HTTPS listener, but access control configured for the HTTP listener still takes effect.	

7. Click Save.

5.3 Advanced Forwarding (Dedicated Load Balancers)


5.3.1 Advanced Forwarding

Overview

Advanced forwarding policies are available only for dedicated load balancers. If you have enabled **Advanced Forwarding**, you can add advanced forwarding policies to HTTP and HTTPS listeners of dedicated load balancers.

You can add advanced forwarding policies to HTTP or HTTPS listeners to forward requests to different backend server groups based on HTTP request method, HTTP header, query string, or CIDR block in addition to domain names and URLs. **Table 5-7** describes the rules and actions that you can configure for request forwarding.

Figure 5-2 How advanced forwarding works

The following describes how an advanced forwarding policy works:

- **Step 1** The client sends a request to the load balancer.
- **Step 2** The load balancer matches the request based on the forwarding rule you configure.
- **Step 3** The load balancer forwards the request to the corresponding backend server or returns a fixed response to the client based on the action you configure.
- **Step 4** The load balancer sends a response to the client.

----End

Table 5-7 Rules and actions supported by an advanced forwarding policy

Forwarding Policy	Description
Forwarding rule	There are six types of forwarding rules: domain name, URL, HTTP request method, HTTP header, query string, and CIDR block
	For details, see Forwarding Rule .
Action	The following actions are supported: forward to a backend server group, redirect to another listener, redirect to another URL, and return a specific response body. For details, see Action Types .

How Requests Are Matched

After you add an HTTP or HTTPS listener to a load balancer, a default forwarding policy is generated. This policy uses the protocol and port specified for the listener to match requests and forward the requests to the backend server group you specified when adding the listener.

The default forwarding policy has the lowest priority and is not included when you sort forwarding policies. It can be edited but cannot be deleted.

Each request is matched based on the forwarding policy priority (a smaller value indicates a higher priority). Once a forwarding policy is matched, the request is forwarded based on this forwarding policy.

- If the request is matched with any forwarding policy of the listener, it is forwarded based on this forwarding policy.
- If the request is not matched with any forwarding policy, it is forwarded based on the default forwarding policy.

Forwarding Rule

Advanced forwarding policies support the following types of forwarding rules: domain name, URL, HTTP request method, HTTP header, query string, and CIDR block (source IP addresses).

Table 5-8 Forwarding rules

Forwarding Rule	Description
Domain name	 Description Route requests based on the domain name. You can configure multiple domain names in a forwarding policy. Each domain name contains at least two labels separated by periods (.). Max total: 100 characters. Max label: 63 characters. Each label can contain letters, digits, hyphens (-), periods (.), and asterisks (*). A label must start with a letter, digit, or asterisk (*) and cannot end with a hyphen (-). An asterisk (*) must be used as the leftmost label if you want to configure a wildcard domain name. Matching rules Example Example
	Request URL: https://www.example.com/login.php?locale=en-us=#videos Domain name in the forwarding rule: www.example.com
URL	 Description Route requests based on URLs. You can configure multiple URLs in a forwarding policy. A URL can contain letters, digits, and special characters _~';@^-%#\$.*+?,=!: \(\)()[]{}. If the URL contains special characters such as question marks (?) or pound keys (#), escape the special characters before configuring the forwarding rule.
	 Matching rules Exact match: The request URL must exactly match that specified in the forwarding policy. The URL must start with a slash (/) and can use asterisks (*) and question marks (?) as wildcards. Prefix match: The requested URL starts with the specified URL string. The URL must start with a slash (/) and can use asterisks (*) and question marks (?) as wildcard characters. Regular expression match: The URLs are matched using a regular expression. For more information about URL matching rules, see URL Matching. Example Request URL: https://www.example.com/login.php?locale=en-us#videos URL in the forwarding rule: /login.php

Forwarding Rule	Description
Query string	Route requests based on the query string.
	A query string consists of a key and one or more values. You need to set the key and values separately.
	The key can contain only letters, digits, and special characters !\$'()*+,./:;=?@^'
	 A key can have one or more values. The value can contain letters, digits, and special characters !\$'()*+,./:;=? @^' Asterisks (*) and question marks (?) can be used as wildcard characters.
	Example Request URL: https://www.example.com/login.php?locale=en-us#videos A query string needs to be configured for the forwarding rule: Key: locale Value: en-us
HTTP request	Route requests based on the HTTP method.
method	You can configure multiple request methods in a forwarding policy.
	The following methods are available: GET, POST, PUT, DELETE, PATCH, HEAD, and OPTIONS.
	Example GET
HTTP header	Route requests based on the HTTP header.
	An HTTP header consists of a key and one or more values. You need to configure the key and values separately.
	The key can contain only letters, digits, underscores (_), and hyphens (-).
	 A key can have one or more values. The value can contain letters, digits, and special characters !#\$%&'()* +,.\/:;<=>?@[]^'{ }~ Asterisks (*) and question marks (?) can be used as wildcard characters.
	Example Key: Accept-Language Value: en-us
CIDR block	Route requests based on the source IP addresses from where requests originate.
	Example 192.168.1.0/24 or 2020:50::44/127

Action Types

Advanced forwarding policies support the following actions: forward to a backend server group, redirect to another listener, redirect to another URL, and return a specific response body.

Table 5-9 Actions of an advanced forwarding policy

Action	Description
Forward to a backend server group	Requests are forwarded to the specified backend server group.
Redirect to another listener	Requests are redirected to another listener, which then routes the requests to its associated backend server group.
	NOTE If you select Redirect to another listener and create a redirect for the listener, it will redirect the requests to the specified HTTPS listener, but access control configured for the listener will still take effect.
	For example, if you configure a redirect for an HTTP listener, HTTP requests to access a web page will be redirected to the HTTPS listener you select and handled by the backend servers associated with the HTTPS listener. As a result, the clients access the web page over HTTPS. The configuration of the HTTP listener will become invalid.

Action	Description
Redirect to	Requests are redirected to the configured URL.
another URL	When clients access website A, the load balancer returns 302 or any other 3xx status code and automatically redirects the clients to website B. You can custom the redirection URL that will be returned to the clients.
	Configure at least one of the following components:
	Protocol: \${protocol}, HTTP, or HTTPS \${protocol}: retains the protocol of the request.
	• Domain Name : A domain name consists of at least two labels separated by periods (.). Each label can contain only letters, digits, hyphens (-), and periods (.), must start with a letter, digit, or asterisk (*), and cannot end with a hyphen (-). \${host} : retains the domain name of the request.
	• Port : ranges from 1 to 65535. \${port} : retains the port number of the request.
	• Path : A path can contain letters, digits, and special characters _~';@^-%#&\$.*+?,=!: \/()[]{} and must start with a slash (/). \${path} : retains the path of the request.
	NOTE If you select regular expression match, the request path will be overwritten by the variables that match the regular expressions. For details, see URL Matching Based on Regular Expressions.
	• Query String: A query string can contain only letters, digits, and special characters !\$'()*+,./:;=?@&^'. Ampersand (&) can only be used as separators.
	• HTTP Status Code: 301, 302, 303, 307, or 308
	Example URL for redirection: http://www.example1.com/index.html?locale=en-us#videos Protocol: HTTP Domain name: www.example1.com Port: 8081 Path: /index.html Query String: locale=en-us HTTP Status Code: 301

Action	Description	
Return a specific	Load balancers return a fixed response to the clients.	
response body	You can custom the status code and response body that load balancers directly return to the clients without the need to route the requests to backend servers.	
	Configure the following components:	
	HTTP Status Code: By default, 2xx, 4xx, and 5xx status codes are supported.	
	• Content-Type: text/plain, text/css, text/html, application/javascript, or application/json	
	• Message Body : This parameter is optional. The value is a string of 0 to 1,024 characters.	
	Example	
	text/plain Sorry, the language is not supported.	
	text/css <head><style type="text/css">div {background-color:red}#div {font-</td></tr><tr><td></td><td>size:15px;color:red}</style></head> text/html	
	<pre>cext/fitfit <form action="/" enctype="multipart/form-data" method="post"><input name="description" type="text" value="some text"/><input name="myFile" type="file"/><button type="submit">Submit</button></form></pre>	
	application/javascript String.prototype.trim = function() {var reExtraSpace = /^\s*(.*?)\s+\$/;return this.replace(reExtraSpace, "\$1")}	
	application/json { "publicip": { "type": "5_bgp","ip_version": 4},"bandwidth": {"name": "bandwidth123","size": 10,"share_type": "PER"}}	
	NOTE Ensure that the response body does not contain carriage return characters. Otherwise, it cannot be saved.	

URL Matching

Table 5-10 shows how URLs configured in the forwarding policies match the URLs in the requests.

Table 5-10 URL matching examples

Request URL	Forwar ding Policy	URL in the Forwarding Policy	Match ing Mode	Forwardin g Policy Priority	Destination Backend Server Group
/elb/ abc.html	Forward ing policy 01	/elb/abc.html	Prefix match	1	Backend server group 01

Request URL	Forwar ding Policy	URL in the Forwarding Policy	Match ing Mode	Forwardin g Policy Priority	Destination Backend Server Group
	Forward ing policy 02	/elb	Prefix match	2	Backend server group 02
/exa/ index.html	Forward ing policy 03	/exa[^\s]*	Regula r expres sion match	3	Backend server group 03
	Forward ing policy 04	/exa/ index.html	Regula r expres sion match	4	Backend server group 04
/mpl/ index.html	Forward ing policy 05	/mpl/ index.html	Exact match	5	Backend server group 05

URLs are matched as follows:

- When the request URL is /elb/abc.html, it matches both forwarding policy 01 and forwarding policy 02. However, the priority of forwarding policy 01 is higher than that of forwarding policy 02. Forwarding policy 01 is used, and requests are forwarded to backend server group 01.
- When the request URL is /exa/index.html, it matches both forwarding policy 03 and forwarding policy 04. However, the priority of forwarding policy 03 is higher than that of forwarding policy 04. Forwarding policy 03 is used, and requests are forwarded to backend server group 03.
- If the request URL is /mpl/index.html, it matches forwarding policy 05 exactly, and requests are forwarded to backend server group 05.

URL Matching Based on Regular Expressions

A path can contain letters, digits, and special characters $_\sim';@^-\%\#\&\$.*+?,=!:|\setminus/()[]$ {} and must start with a slash (/). **S{path}** retains the path of the request.

If you select regular expression match, the request path will be overwritten by the variables that match the regular expressions.

How Request Paths Are Overwritten

1. URL matching: The client sends a request, and the request matches a regular expression in the forwarding rule. You can specify one or more regular expressions as the match conditions and set multiple capture groups represented by parentheses () for one regular expression.

- 2. Extraction and replacement: extracts the content from the capture groups.
- 3. Destination path: writes them to \$1, \$2, all the way to \$9 configured for the path.

Example

When a client requests to access /test/ELB/elb/index, which matches the regular expression /test/(.*)/(.*)/index, \$1 will be replaced by ELB and \$2 by elb, and then the request will be redirected to /ELB/elb.

Table 5-11 URL matching based on regular expressions

Matching Step		Description
Forwarding rule: URL	Regular expression match	Matching condition: /test/(.*)/(.*)/ index
		Request URL: /test/ELB/elb/index
Action: redirect to another URL	Path	 Path: /\$1/\$2 Extracting content \$1: ELB \$2: elb Destination path: /ELB/elb

5.3.2 Managing an Advanced Forwarding Policy

Scenarios

You can add advanced forwarding policies to HTTP or HTTPS listeners of dedicated load balancers to route requests more specifically.

Each advanced forwarding policy consists of one or more forwarding rules and an action.

- Dedicated load balancers support the following types of forwarding rules: domain name, URL, HTTP request method, HTTP header, query string, and CIDR block (source IP addresses). For details, see Forwarding Rule.
- The following actions are supported: forward to a backend server group, redirect to another listener, redirect to another URL, and return a specific response body. For details, see Action Types.
- Multiple forwarding rules can be configured in a single forwarding policy.
- Forwarding policies can be sorted based on their priorities.

Constraints

- Advanced forwarding cannot be disabled once enabled.
- An advanced forwarding policy can contain a maximum of 10 conditions.

Enabling Advanced Forwarding

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. Click the **Listeners** tab and click the target listener.
- 6. On the **Summary** tab page, click **Enable** next to **Advanced Forwarding**.
- 7. Click **OK**.

Adding an Advanced Forwarding Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. On the **Listeners** tab page, add a forwarding policy in either of the following ways:
 - Click Add/Edit Forwarding Policy in the Forwarding Policies column.
 - Locate the target listener, click its name, and click Forwarding Policies.
- Click Add Forwarding Policy and configure the parameters based on Table
 5-8 and Table 5-9.
- 7. Click Save.

Sorting Forwarding Policies

Multiple forwarding policies can be sorted to set their priorities.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, click **Sort**.
- 7. Drag the forwarding policies to adjust their priorities.
- 8. Click Save.

Modifying a Forwarding Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, select the forwarding policy, and click **Edit**.
- 7. Modify the parameters and click **Save**.

Deleting a Forwarding Policy

You can delete a forwarding policy if you no longer need it.

Deleted forwarding policies cannot be recovered.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, select the forwarding policy and click **Delete** on the top right.
- 7. In the displayed dialog box, click **Yes**.

5.4 Mutual Authentication

Scenarios

In common HTTPS service scenarios, only the server certificate is required for authentication. For some mission-critical services, such as financial transactions, you need to deploy both the server certificate and the client certificate for mutual authentication.

This section uses self-signed certificates as an example to describe how to configure mutual authentication. Self-signed certificates do not provide all the security properties provided by certificates signed by a CA. It is recommended that you purchase certificates from other CAs.

Creating a CA Certificate Using OpenSSL

- 1. Log in to a Linux server with OpenSSL installed.
- 2. Create the **server** directory and switch to the directory:

mkdir ca

cd ca

Create the certificate configuration file ca_cert.conf. The file content is as follows:

```
[ req ]
distinguished_name = req_distinguished_name
prompt = no

[ req_distinguished_name ]
O = ELB
```

4. Create the CA certificate private key **ca.key**.

openssl genrsa -out ca.key 2048

Figure 5-3 Private key of the CA certificate

```
[root@elbv30003 ca]# openss genrsa -out ca.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
......

e is 65537 (0x010001)
[root@elbv30003 ca]#
```

- 5. Create the certificate signing request (CSR) file **ca.csr** for the CA certificate. **openssl req -out ca.csr -key ca.key -new -config ./ca_cert.conf**
- 6. Create the self-signed CA certificate **ca.crt**.

openssl x509 -req -in ca.csr -out ca.crt -sha1 -days 5000 -signkey ca.key

Figure 5-4 Creating a self-signed CA certificate

```
[root@elbv30003 ca]# openssl x509 -req -in ca.csr -out ca.crt -shal -days 5000 -signkey ca.key
Signature ok
subject=0 = ELB
Getting Private key
[root@elbv30003 ca]# ]
```

Issuing a Server Certificate Using the CA Certificate

The server certificate can be a CA signed certificate or a self-signed one. In the following steps, a self-signed certificate is used as an example to describe how to create a server certificate.

- 1. Log in to the server where the CA certificate is generated.
- 2. Create a directory at the same level as the directory of the CA certificate and switch to the directory.

mkdir server

cd server

3. Create the certificate configuration file **server_cert.conf**. The file content is as follows:

```
[ req ]
distinguished_name = req_distinguished_name
```

```
prompt = no

[ req_distinguished_name ]

O = ELB

CN = www.test.com
```


Set the **CN** field to the domain name or IP address of the Linux server.

4. Create the server certificate private key **server.key**.

openssl genrsa -out server.key 2048

- 5. Create the CSR file **server.csr** for the server certificate.
 - openssl req -out server.csr -key server.key -new -config ./server_cert.conf
- 6. Use the CA certificate to issue the server certificate **server.crt**.

openssl x509 -req -in server.csr -out server.crt -sha1 -CAcreateserial -days 5000 -CA ../ca/ca.crt -CAkey ../ca/ca.key

Figure 5-5 Issuing a server certificate

Issuing a Client Certificate Using the CA Certificate

- 1. Log in to the server where the CA certificate is generated.
- 2. Create a directory at the same level as the directory of the CA certificate and switch to the directory.

mkdir client

cd client

3. Create the certificate configuration file **client_cert.conf**. The file content is as follows:

```
[ req ]
distinguished_name = req_distinguished_name
prompt = no

[ req_distinguished_name ]
O = ELB
CN = www.test.com
```

□ NOTE

Set the CN field to the domain name or IP address of the Linux server.

4. Create the client certificate private key **client.key**.

openssl genrsa -out client.key 2048

Figure 5-6 Creating a client certificate private key

Create the CSR file client.csr for the client certificate.
 openssl req -out client.csr -key client.key -new -config ./client_cert.conf

Figure 5-7 Creating a client certificate CSR file

```
[root@elbv30003 client]# openssl req -out client.csr -key client.key -new -config ./client_cert.conf
```

6. Use the CA certificate to issue the client certificate **client.crt**.

openssl x509 -req -in client.csr -out client.crt -sha1 -CAcreateserial -days 5000 -CA ../ca/ca.crt -CAkey ../ca/ca.key

Figure 5-8 Issuing a client certificate

```
[root@elbv30003 client]# openssl x509 -req -in client.csr -out client.crt -shal -CAcreateserial -days 5000 -CA ../ca/ca.crt -CAkey ../ca/ca.key Signature ok subject=0 = ELB, CN = www.test.com Getting CA Private Key [root@elbv30003 client]#
```

7. Convert the client certificate to a .p12 file that can be identified by the browser.

openssl pkcs12 -export -clcerts -in client.crt -inkey client.key -out client.p12

◯ NOTE

A password is required during command execution. Save this password, which will be required when you import the certificate using the browser.

Configuring the Server Certificate and Private Key

- 1. Log in to the load balancer management console.
- 2. In the navigation pane on the left, choose **Certificates**.
- 3. In the navigation pane on the left, choose **Certificates**. On the displayed page, click **Add Certificate**. In the **Add Certificate** dialog box, select **Server certificate**, copy the content of server certificate **server.crt** to the **Certificate Content** area and the content of private key file **server.key** to the **Private Key** area, and click **OK**.

Delete the last newline character before you copy the content.

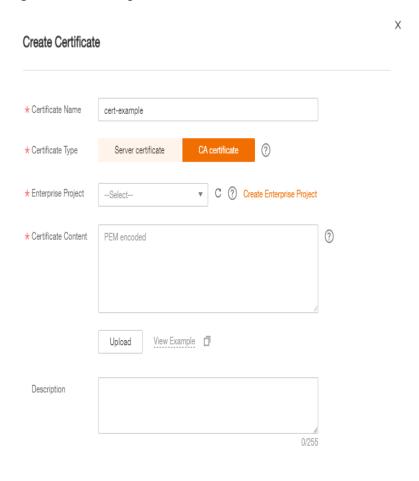


Figure 5-9 Creating a certificate

Ⅲ NOTE

The certificate and private key must be PEM-encoded.

Configuring the CA Certificate

- **Step 1** Log in to the load balancer management console.
- **Step 2** In the navigation pane on the left, choose **Certificates**.
- Step 3 Click Add Certificate. In the Add Certificate dialog box, select CA certificate, copy the content of CA certificate ca.crt created in Creating a CA Certificate Using OpenSSL to the Certificate Content area, and click OK.

Ⅲ NOTE

Delete the last newline character before you copy the content.

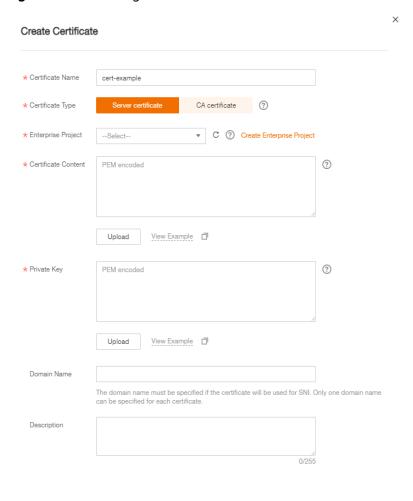


Figure 5-10 Creating a certificate

□ NOTE

The certificate must be PEM-encoded.

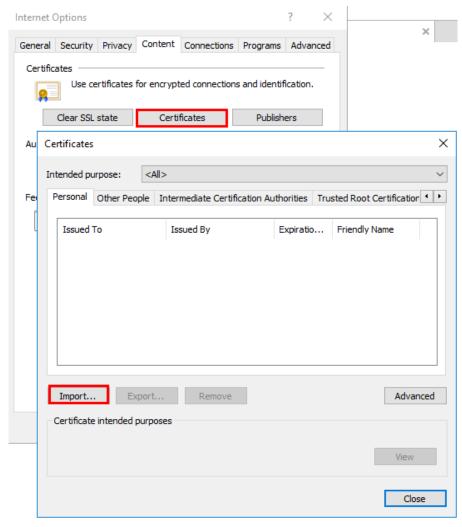
----End

Configuring Mutual Authentication

- 1. Log in to the load balancer management console.
- Locate the load balancer and click its name. Under Listeners, click Add Listener. Select HTTPS for Frontend Protocol and Mutual authentication, and select a CA certificate and server certificate.

Add backend servers.

For detailed operations, see Overview.


Importing and Testing the Client Certificate

Method 1: Using a browser

1. Import the client certificate using a browser (Internet Explorer 11 is used as an example).

- a. Export client.p12 from the Linux server.
- b. Open the browser, choose **Settings** > **Internet Options** and click **Content**.
- c. Click **Certificates** and then **Import** to import the **client.p12** certificate.

Figure 5-11 Importing the client.p12 certificate

2. Verify the import.

Enter the access address in the address box of your browser. A window is displayed asking you to select the certificate. Select the client certificate and click **OK**. If the website can be accessed, the certificate is successfully imported.

Figure 5-12 Accessing the website

Method 2: Using cURL

1. Import the client certificate.

Copy client certificate **client.crt** and private key **client.key** to a new directory, for example, **/home/client_cert**.

2. Verify the import.

On the Shell screen, run the following command:

curl -k --cert /home/client_cert/client.crt --key /home/client_cert/client.key https://

XXX.XXX.XXXX.XXXX/-I

Ensure that the certificate address, private key address, IP address and listening port of the load balancer are correct. Replace https:// XXX.XXX.XXXXXXXX with the actual IP address and port number. If the expected response code is returned, the certificate is successfully imported.

Figure 5-13 Example of a correct response code

```
[192.168.10.216 test]#curl -k --cert client.crt --key client.key https://192.168.10.16:4500 -I
HTTP/1.1 200 OK
Date: Fri, 25 Sep 2020 10:11:17 GMT
Content-Type: application/octet-stream
Connection: keep-alive
Set-Cookie: name=d92f80b6-55e9-4b61-9c37-932ccd7b02f2; path=/; Expires=Sat, 26-Sep-20 10:11:19 GMT
Server: elb
```

5.5 HTTP/2

Scenarios

Hypertext Transfer Protocol 2.0 (HTTP/2) is the next-generation HTTP protocol. HTTP/2 is used to secure connections between the load balancer and clients. You can enable HTTP/2 when you add HTTPS listeners. If you have already added an HTTPS listener, you can also enable this function.

Constraints

You can enable HTTP/2 only for HTTPS listeners.

Enabling HTTP/2 When Adding a Listener

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under Listeners, click Add Listener.
- 6. In the Add Listener dialog box, set Frontend Protocol to HTTPS.
- 7. Expand Advanced Settings and enable HTTP/2.
- 8. Confirm the configurations and click **Submit**.

Enabling or Disabling HTTP/2 When Modifying a Listener

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Summary** tab page, click **Edit** on the top right.
- 7. In the **Edit** dialog box, expand **Advanced Settings** and enable or disable HTTP/2.
- 8. Click OK.

5.6 HTTP Redirection to HTTPS

Scenarios

HTTPS is an extension of HTTP. HTTPS encrypts data between a web server and a browser.

If you enable redirection, all HTTP requests to your website are transmitted over HTTPS connections to improve security.

<u>A</u> CAUTION

- If the listener protocol is HTTP, only the GET or HEAD method can be used for redirection. If you create a redirect for an HTTP listener, the client browser will change POST or other methods to GET. If you want to use other methods rather than GET and HEAD, add an HTTPS listener.
- HTTP requests are forwarded to the HTTPS listener as HTTPS requests, which are then routed to backend servers over HTTP.
- If an HTTP listener is redirected to an HTTPS listener, no certificate can be deployed on the backend servers associated with the HTTPS listener. If certificates are deployed, HTTPS requests will not take effect.

Prerequisites

- You have added an HTTPS listener.
- You have added an HTTP listener.

Creating Redirection to HTTPS

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the HTTP listener, and click its name.
- 6. On the **Forwarding Policies** tab page, click **Add Forwarding Policy**.

Table 5-12 Configuring parameters for redirection

Parameter	Setting
Action	Select Redirect to another listener.
Listener	Select the HTTPS listener to which requests are redirected.

7. After the forwarding policy is added, click **Save**.

Figure 5-14 Redirection to an HTTPS listener

■ NOTE

- If requests to an HTTP listener are redirected, the listener will become invalid, but access control to the listener will still take effect.
- If you create a redirect for an HTTP listener, the backend server will return HTTP 301 Move Permanently to the clients.

Modifying Redirection to HTTPS

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the HTTP listener, and click its name.
- 6. On the **Forwarding Policies** tab page, locate the target forwarding policy and click **Edit**.
- 7. You can change the HTTPS listener to which requests are redirected as required.
- 8. Click Save.

Deleting Redirection to HTTPS

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Forwarding Policies** tab page, click **Delete** on the right of the target forwarding policy.
- 7. In the displayed dialog box, click Yes.

5.7 Rewriting the X-Forwarded-Host Field

Rewriting the X-Forwarded-Host header of the client allows ELB to add the host information in the request header of the client to the X-Forwarded-Host header and transmits the request to backend servers.

Scenarios

When you add an HTTPS or HTTP listener to a load balancer, the function of rewriting the X-Forwarded-Host header field is enabled by default.

This function allows ELB to rewrite the X-Forwarded-Host header field based on the Host field in the client request and transmit the rewritten header to backend servers.

You can disable it at any time if you no longer need it. The following are operations for disabling this function on the management console.

□ NOTE

This function is available only for HTTP and HTTPS listeners.

Disabling the Function

1. Log in to the management console.

- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the load balancer list, locate the load balancer and click its name.
- 5. Click the **Listeners** tab, identify the row where the target listener is located, and click **Edit** in **Operation** column.
- 6. Expand Advanced Settings and disable Rewrite X-Forwarded-Host.

∩ NOTE

- You can also disable it when adding an HTTP or HTTPS listener. For details, see
 Adding an HTTP Listener and Adding an HTTPS Listener.
- If you want to enable this function after you have disabled it, perform the above steps.

5.8 SNI Certificate

Scenarios

If you have an application that can be accessed through multiple domain names and each domain name uses a different certificate, you can enable Server Name Indication (SNI) when you add an HTTPS listener.

SNI, an extension to Transport Layer Security (TLS), enables a server to present multiple certificates on the same IP address and port number. SNI allows the client to indicate the domain name of the website while sending an SSL handshake request. Once receiving the request, the load balancer queries the right certificate based on the hostname or domain name and returns the certificate to the client. If no certificate is found, the load balancer will return the default certificate.

You can enable SNI only when you add HTTPS listeners. Load balancers can have multiple SNI certificates bound.

Constraints

An HTTPS listener can have up to 30 SNI certificates.

Prerequisites

- You have created an SNI certificate by performing the operations in Adding, Modifying, or Deleting a Certificate.
- You have added an HTTPS listener to the load balancer by performing the operations in **Adding an HTTPS Listener**.

■ NOTE

- You need to specify a domain name for an SNI certificate. The domain name must be the same as that in the certificate.
- A domain name can be used by both an ECC certificate and an RSA certificate. If there
 are two SNI certificates that use the same domain name, the ECC certificate is displayed
 preferentially.
- If a certificate has expired, you need to manually replace or delete it by following the instructions in **Adding**, **Modifying**, or **Deleting a Certificate**.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Summary** tab page, click **Edit** on the top right.
- 7. Enable SNI and select an SNI certificate.
- 8. Click OK.

6 Backend Server Group

6.1 Overview

Introduction

A backend server group is a logical collection of one or more backend servers to receive massive concurrent requests at the same time. A backend server can be an ECS, BMS, or IP address.

The following process describes how a backend server group forwards traffic:

- 1. A client sends a request to your application. The listeners added to your load balancer use the protocols and ports you have configured forward the request to the associated backend server group.
- 2. Healthy backend servers in the backend server group receive the request based on the load balancing algorithm, handle the request, and return a result to the client.
- 3. In this way, massive concurrent requests can be processed at the same time, improving the availability of your applications.

Table 6-1 Adding backend servers

Backend Server Type	Description	Reference
Cloud servers	You can add ECSs or BMSs that are in the same VPC as the load balancer.	Adding Backend Servers
IP as backend servers	You can add cloud servers in other VPCs or on-premises servers if IP as a backend is enabled for the load balancer.	Adding IP Addresses as Backend Servers

Advantages

Backend server groups can bring the following benefits:

- **Reduced costs and easier management**: You can add or remove backend servers as traffic changes over the time. This can help avoid low resource utilization and makes it easy to manage backend servers.
- **Higher reliability**: Traffic is routed only to healthy backend servers in the backend server group.

Key Functions

You can configure the key functions listed in **Table 6-2** for each backend server group to ensure service stability.

Table 6-2 Key functions

Key Function	Description	Detail
Health Check	Specifies whether to enable the health check option. Health checks determine whether backend servers are healthy.	Health Check
	If a backend server is detected unhealthy, it will not receive requests from the associated load balancer, improving your service reliability.	
Load Balancing Algorithm	The load balancer distributes traffic based on the load balancing algorithm you have configured for the backend server group.	Load Balancing Algorithms
Sticky Session	Specifies whether to enable the sticky session option. If you enable this option, all requests from a client during one session are sent to the same backend server.	Sticky Session
Slow Start	Specifies whether to enable slow start. After you enable it, the load balancer linearly increases the proportion of requests to backend servers in this mode.	Slow Start (Dedicated Load Balancers)
	When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode.	
	NOTE Slow start is only available for HTTP and HTTPS backend server groups of dedicated load balancers.	

Precautions for Creating a Backend Server Group

The backend protocol of the new backend server group must match the frontend protocol of the listener as described in **Table 6-3**.

You can create a backend server group by referring to Table 6-4.

Table 6-3 The frontend and backend protocol

Frontend Protocol	Backend Protocol
TCP	ТСР
UDP	• UDP
	• QUIC
НТТР	НТТР
HTTPS	• HTTP
	• HTTPS

Table 6-4 Creating a backend server group

Load Balancer Type	Reference
Dedicated	Creating a Backend Server Group (Dedicated Load Balancers)
Shared	Creating a Backend Server Group (Shared Load Balancers)

6.2 Key Features

6.2.1 Health Check

ELB periodically sends requests to backend servers to check whether they can process requests. This process is called health check.

If a backend server is detected unhealthy, the load balancer will stop route requests to it. After the backend server recovers, the load balancer will resume routing requests to it.

If backend servers have to handle large number of requests, frequent health checks may overload the backend servers and cause them to respond slowly. To address this problem, you can prolong the health check interval or use TCP or UDP instead of HTTP. You can also disable health check. If you choose to disable health check, requests may be routed to unhealthy servers, and service interruptions may occur.

Health Check Protocol

You can configure health checks when configuring backend server groups. Generally, you can use the default setting or select a different health check protocol as you need.

If you want to modify health check settings, see details in **Modifying Health Check Settings**.

Select a health check protocol that matches the backend protocol as described in **Table 6-5** and **Table 6-6**.

Table 6-5 The backend protocol and health check protocols (dedicated load balancers)

Backend Protocol	Health Check Protocol
ТСР	TCP, HTTP, or HTTPS
UDP	UDP
QUIC	UDP
НТТР	TCP, HTTP, or HTTPS
HTTPS	TCP, HTTP, or HTTPS

Table 6-6 The backend protocol and health check protocols (shared load balancers)

Backend Protocol	Health Check Protocol
ТСР	TCP or HTTP
UDP	UDP
НТТР	TCP or HTTP
HTTPS	TCP or HTTP

TCP Health Check

For TCP, HTTP, and HTTPS backend protocols, you can use TCP to initiate three-way handshakes to obtain the statuses of backend servers.

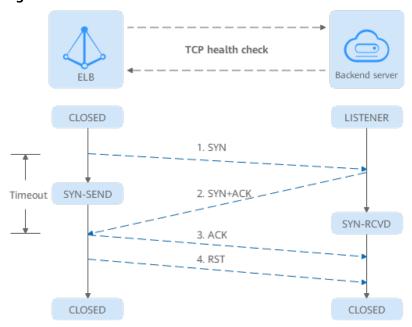


Figure 6-1 TCP health check

The TCP health check process is as follows:

- 1. The load balancer sends a TCP SYN packet to the backend server (in the format of { Private IP address}:{ Health check port}).
- 2. The backend server returns an SYN-ACK packet.
 - If the load balancer does not receive the SYN-ACK packet within the timeout duration, it declares that the backend server is unhealthy and sends an RST packet to the backend server to terminate the TCP connection.
 - If the load balancer receives the SYN-ACK packet from the backend server within the timeout duration, it sends an ACK packet to the backend server and declares that the backend server is healthy. After that, the load balancer sends an RST packet to the backend server to terminate the TCP connection.

NOTICE

After a successful TCP three-way handshake, an RST packet will be sent to close the TCP connection. The application on the backend server may consider this packet a connection error and reply with a message, for example, "Connection reset by peer". To avoid this issue, take either of the following actions:

- Use HTTP Health Check.
- Have the backend server ignore the connection error.

UDP Health Check

For UDP backend protocol, ELB sends ICMP and UDP probe packets to backend servers to check their health.

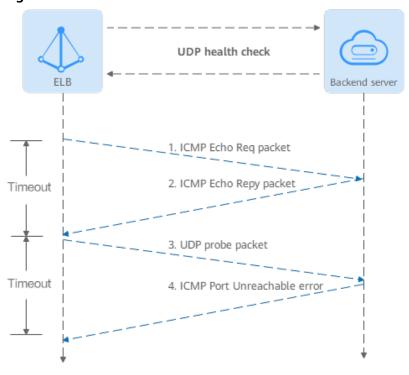


Figure 6-2 UDP health check

The UDP health check process is as follows:

- 1. The load balancer sends an ICMP Echo Request packet to the backend server.
 - If the load balancer does not receive an ICMP Echo Reply packet within the health check timeout duration, the backend server is declared unhealthy.
 - If the load balancer receives an ICMP Echo Reply packet within the timeout period, it sends a UDP probe packet to the backend server.
- 2. If the load balancer does not receive an ICMP Port Unreachable error within the health check timeout duration, it declares the backend server is healthy. If the load balancer receives an ICMP Port Unreachable error, the backend server is declared unhealthy.

HTTP Health Check

You can also configure HTTP health checks to obtain server statuses through HTTP GET requests if you select TCP, HTTP, or HTTPS as the backend protocol. **Figure 6-3** shows how an HTTP health check works.

Figure 6-3 HTTP health check

The HTTPS health check process is as follows:

- 1. The load balancer sends an HTTP GET request to the backend server (in format of {Private IP address}:{Health check port}| {Health check path}). (You can specify a domain name when configuring a health check.)
- The backend server returns an HTTP status code to ELB.
 - If the load balancer receives the status code within the health check timeout duration, it compares the status code with the preset one. If the status codes are the same, the backend server is declared healthy.
 - If the load balancer does not receive any response from the backend server within the health check timeout duration, it declares the backend server is unhealthy.

HTTPS Health Check

For TCP, HTTP, and HTTPS backend protocols, you can use HTTPS to establish an SSL connection over TLS handshakes to obtain the statuses of backend servers.

Figure 6-4 shows how an HTTPS health check works.

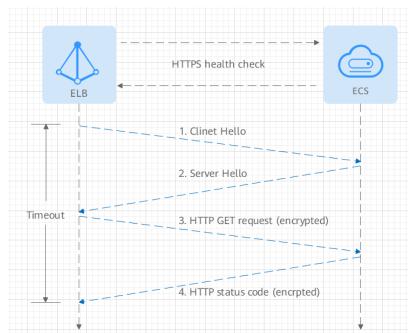


Figure 6-4 HTTPS health check

The HTTPS health check process is as follows:

- 1. The load balancer sends a Client Hello packet to establish an SSL connection with the backend server.
- 2. After receiving the Server Hello packet from the backend server, the load balancer sends an encrypted HTTP GET request to the backend server (in the format of *{Private IP address}:{Health check port}/{Health check path}*). (You can specify a domain name when configuring a health check.)
- 3. The backend server returns an HTTP status code to the load balancer.

- If the load balancer receives the status code within the health check timeout duration, it compares the status code with the preset one. If the status codes are the same, the backend server is declared healthy.
- If the load balancer does not receive any response from the backend server within the health check timeout duration, it declares the backend server is unhealthy.

Health Check Time Window

Health checks greatly improve service availability. However, if health checks are too frequent, service availability will be compromised. To avoid the impact, ELB declares a backend server healthy or unhealthy after several consecutive health checks.

Take shared load balancers as an example. The health check time window is determined by the factors in **Table 6-7**:

The health check time window is determined by the factors in **Table 6-7**:

Table 6-7 Factors affecting the health check time window

Factor	Description
Check Interval	How often health checks are performed.
Timeout Duration	How long the load balancer waits for the response from the backend server.
Health Check Threshold	The number of consecutive successful or failed health checks required for determining whether the backend server is healthy or unhealthy.

The following is a formula for you to calculate the health check time window:

- Time window for a backend server to be detected healthy = Timeout duration
 x Healthy threshold + Interval x (Healthy threshold 1)
- Time window for a backend server to be detected unhealthy = Timeout duration x Unhealthy threshold + Interval x (Unhealthy threshold - 1)

As shown in **Figure 6-5**, if the health check interval is 4s, the health check timeout duration is 2s, and unhealthy threshold is 3, the time window for a backend server to be considered unhealthy is calculated as follows: $2 \times 3 + 4 \times (3 - 1) = 14s$.

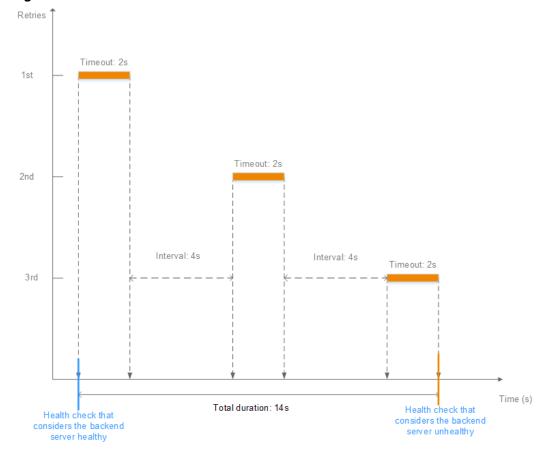


Figure 6-5 Health check timeout duration

Rectifying an Unhealthy Backend Server

If a backend server is detected unhealthy, see **How Do I Troubleshoot an Unhealthy Backend Server?**

6.2.2 Load Balancing Algorithms

Overview

Load balancers receive requests from clients and forward them to backend servers in one or more AZs. Each load balancer has at least a listener and a backend server. The load balancing algorithm you select when you create the backend server group determines how requests are distributed.

ELB supports the following load balancing algorithms: weighted round robin, weighted least connections, source IP hash, and connection ID.

You can select the load balancing algorithm that best suits your needs.

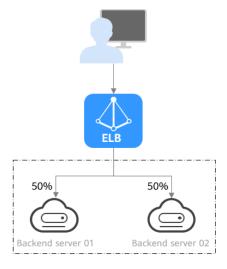
Table 6-8 Load balancing algorithms

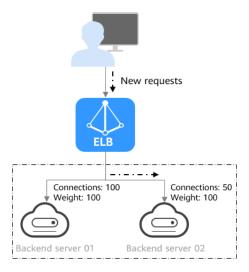
Load Balancing Algorithm	Description
Weighted round robin	Routes requests to backend servers in sequence based on their weights.
Weighted least connections	Routes requests to backend servers with the smallest connections-to-weight ratio.
Consistent hashing • Source IP hash • Connection ID	Calculates the request fields using the consistent hashing algorithm to obtain a hash value and routes requests with the same hash value to the same backend server, even if the number of backend servers in the backend server group changes.
	 Source IP hash: Calculates the source IP address of each request and routes requests from the same source IP address to the same backend server.
	 Connection ID: Calculates the QUIC connection ID and routes requests with the same ID to the same backend server.

Weighted Round Robin

Figure 6-6 shows an example of how requests are distributed using the weighted round robin algorithm. Two backend servers are in the same AZ and have the same weight, and each server receives the same proportion of requests.

Figure 6-6 Traffic distribution using the weighted round robin algorithm




Table 6-9 Weighted round robin

Description	Requests are routed to backend servers based on their weights. Backend servers with higher weights receive proportionately more requests, whereas equal-weighted servers receive the same number of requests.
When to Use	This algorithm is typically used for short connections, such as HTTP connections.
	Flexible load balancing: When you need more refined load balancing, you can set a weight for each backend server to specify the percentage of requests to each server. For example, you can set higher weights to backend servers with better performance so that they can process more requests.
	Dynamic load balancing: You can adjust the weight of each backend server in real time when the server performance or load fluctuates.
Disadvantages	You need to set a weight for each backend server. If you have a large number of backend servers or your services require frequent adjustments, setting weights would be time-consuming.
	If the weights are inappropriate, the requests processed by each server may be imbalanced. As a result, you may need to frequently adjust server weights.

Weighted Least Connections

Figure 6-7 shows an example of how requests are distributed using the weighted least connections algorithm. Two backend servers are in the same AZ and have the same weight, 100 connections have been established with backend server 01, and 50 connections have been established with backend server 02. New requests are preferentially routed to backend server 02.

Figure 6-7 Traffic distribution using the weighted least connections algorithm

Table 6-10 Weighted least connections

Description	In addition to the number of active connections established with each backend server, each server is assigned a weight based on their processing capability. Requests are routed to the server with the lowest connections-to-weight ratio.
When to Use	 This algorithm is often used for persistent connections, such as connections to a database. Flexible load balancing: Load balancers distribute requests based on the number of established connections and the weight of each backend server and route requests to the server with the lowest connections-to-weight ratio. This helps prevent servers from being underloaded or overloaded. Dynamic load balancing: When the number of connections to and loads on backend servers change, you can use the weighted least connection algorithm to dynamically adjust the requests distributed to each server in real time.
	Stable load balancing: You can use this algorithm to reduce the peak loads on each backend server and improve service stability and reliability.
Disadvantages	 Complex calculation: The weighted least connections algorithm needs to calculate and compare the number of connections established with each backend server in real time before selecting a server to route requests. Dependency on connections to backend servers: The algorithm routes requests based on the number of connections established with each backend server. If monitoring data is inaccurate or outdated, requests may not be distributed evenly across backend servers. The algorithm can only collect statistics on the connections between a given load balancer and a backend server, but cannot obtain the total number of connections to the backend server if it is associated with multiple load balancers. Too much loads on new servers: If existing backend servers have to handle a large number of requests, new requests will be routed to new backend servers. This may deteriorate new servers or even cause them to fail.

Source IP Hash

Figure 6-8 shows an example of how requests are distributed using the source IP hash algorithm. Two backend servers are in the same AZ and have the same weight. If backend server 01 has processed a request from IP address A, the load balancer will route new requests from IP address A to backend server 01.

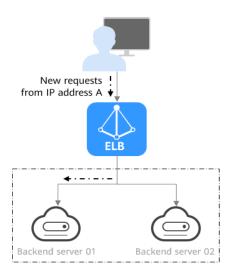


Figure 6-8 Traffic distribution using the source IP hash algorithm

Table 6-11 Source IP hash

Description	The source IP hash algorithm calculates the source IP address of each request and routes requests from the same IP address to the same backend server.
When to Use	This algorithm is often used for applications that need to maintain user sessions or state.
	Session persistence: Source IP hash ensures that requests with the same source IP address are distributed to the same backend server.
	Data consistency: Requests with the same hash value are distributed to the same backend server.
	Load balancing: In scenarios that have high requirements for load balancing, this algorithm can distribute requests to balance loads among servers.
Disadvantages	• Imbalanced loads across servers: This algorithm tries its best to ensure request consistency when backend servers are added or removed. If the number of backend servers decreases, some requests may be redistributed, causing imbalanced loads across servers.
	Complex calculation: This algorithm calculates the hash values of requests based on hash factors. If servers are added or removed, some requests may be redistributed, making calculation more difficult.

Connection ID

Figure 6-9 shows an example of how requests are distributed using the connection ID algorithm. Two backend servers are in the same AZ and have the same weight. If backend server 01 has processed a request from client A, the load balancer will route new requests from client A to backend server 01.

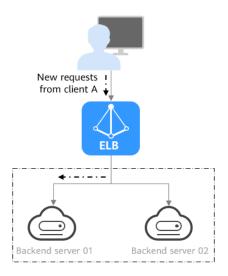


Figure 6-9 Traffic distribution using the connection ID algorithm

Table 6-12 Connection ID

Description	The connection ID algorithm calculates the QUIC connection ID and routes requests with the same ID to the same backend server. A QUIC ID identifies a QUIC connection. This algorithm distributes requests by QUIC connection.
	You can use this algorithm to distribute requests only to QUIC backend server groups.
When to Use	 This algorithm is typically used for QUIC requests. Session persistence: The connection ID algorithm ensures that requests with the same QUIC ID are distributed to the same backend server. Data consistency: Requests with the same hash value are distributed to the same backend server. Load balancing: In scenarios that have high requirements for load balancing, this algorithm can distribute requests to balance loads among servers.
Disadvantages	 Imbalanced loads across servers: This algorithm tries its best to ensure request consistency when backend servers are added or removed. If the number of backend servers decreases, some requests may be redistributed, causing imbalanced loads across servers. Complex calculation: This algorithm calculates the hash values of requests based on hash factors. If servers are added or removed, some requests may be redistributed, making calculation more difficult.

6.2.3 Sticky Session

Sticky sessions ensure that requests from a client always get routed to the same backend server before a session elapses.

Here is an example that describes how sticky session works. Assume that you have logged in to a server. After a while, you send another request. If sticky sessions are not enabled, the request may be routed to another server, and you will be asked to log in again. If sticky sessions are enabled, all your requests are processed by the same server, and you do not need to repeatedly log in.

Differences Between Sticky Sessions at Layer 4 and Layer 7

The following table describes the differences of sticky sessions at Layer 4 at Layer 7.

Table 6-13 Sticky session comparison

OSI Layer	Listener Protocol	Sticky Session Type	Stickiness Duration	Scenarios Where Sticky Sessions Become Invalid
Layer 4	TCP or UDP	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hashing key, and all backend servers are numbered. The system allocates the client to a particular server based on the generated key. This allows requests from the same IP address are forwarded to the same backend server.	 Default: 20 minutes Maximum: 60 minutes Range: 1 minute to 60 minutes 	 Source IP addresses of the clients change. The session stickiness duration has been reached.

OSI Layer	Listener Protocol	Sticky Session Type	Stickiness Duration	Scenarios Where Sticky Sessions Become Invalid
Layer 7	HTTP or HTTPS	Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the cookie are routed to the same backend server. The load balancer itself does not generate cookies. Application cookie: The application deployed on the backend server generates a cookie after receiving the first request from the client. All subsequent requests with the same cookie are routed to the same backend server.	 Default: 20 minutes Maximum: 1,440 minutes Range: 1 minute to 1,440 minutes 	 If requests sent by the clients do not contain a cookie, sticky sessions will not take effect. Requests from the clients exceed the session stickiness duration.

◯ NOTE

- If you set **Load Balancing Algorithm** to **Source IP hash**, you do not need to manually enable and configure **Sticky Session**. Source IP hash allows requests from the same client to be directed to the same server.
- If you set Load Balancing Algorithm to Weighted round robin or Weighted least connections, you need to manually enable and configure Sticky Session.

Constraints and Limitations

- If you use Direct Connect or VPN to access ELB, you must select Source IP
 hash as the load balancing algorithm and disable sticky sessions for ELB.
- Dedicated load balancers support Source IP address and Load balancer cookie.
- Shared load balancers support three types of sticky session: Source IP address, Load balancer cookie, and Application cookie.

◯ NOTE

- For HTTP and HTTPS listeners, enabling or disabling sticky sessions may cause few seconds of service interruption.
- If you enable sticky sessions, traffic to backend servers may be unbalanced. If this happens, disable sticky sessions and check the requests received by each backend server.

6.2.4 Slow Start (Dedicated Load Balancers)

If you enable slow start, the load balancer linearly increases the proportion of requests to the new backend servers added to the backend server group. When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode. For details about how to set weights for backend servers, see **Backend Server Weights**.

Slow start gives applications time to warm up and respond to requests with optimal performance.

Slow start is only available for HTTP and HTTPS backend server groups of dedicated load balancers.

Backend servers will exit slow start in either of the following cases:

- The slow start duration elapses.
- Backend servers become unhealthy during the slow start duration.

Constraints

- Weighted round robin must be selected as the load balancing algorithm.
- Slow start takes effect only for new backend servers and does not take effect when the first backend server is added to a backend server group.
- After the slow start duration elapses, backend servers will not enter the slow start mode again.
- Slow start takes effect when health check is enabled and the backend servers are running normally.
- If health check is disabled, slow start takes effect immediately.

6.3 Creating a Backend Server Group (Dedicated Load Balancers)

Scenario

To route requests, you need to associate at least one backend server group to each listener.

□ NOTE

This section describes how you can create a backend server group for a dedicated load balancer.

You can create a backend server group for a load balancer in any of the ways described in **Table 6-14**.

Table 6-14 Creating a backend server group

Scenario	Procedure
Creating a backend server group and associating it with a load balancer	Procedure
Creating a backend server group when adding a listener	You can add listeners using different protocols as required. For details, see Overview.
	References are as follows:
	Adding a TCP Listener
	Adding a UDP Listener
	Adding an HTTP Listener
	Adding an HTTPS Listener
Changing the backend server group associated with the listener	Changing a Backend Server Group

Constraints

The backend protocol of the new backend server group must match the frontend protocol of the listener as described in **Table 6-15**.

Table 6-15 The frontend and backend protocol

Frontend Protocol	Backend Protocol
TCP	ТСР
UDP	• UDP
	• QUIC

Frontend Protocol	Backend Protocol
НТТР	НТТР
HTTPS	• HTTP
	HTTPS

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. Click Create Backend Server Group in the upper right corner.
- 6. Configure the routing policy based on Table 6-16.

Table 6-16 Parameters required for configuring a routing policy

Parameter	Description	Example Value
Load Balancer Type	Specifies the type of load balancers that can use the backend server group. Dedicated load balancers are recommended.	-
	The following parameters apply to exclusive load balancers.	
Load Balancer	Specifies whether to associate a load balancer.	-
Backend Server Group Name	Specifies the name of the backend server group.	server_group
Backend Protocol	Specifies the protocol that backend servers in the backend server group use to receive requests from the listeners. The protocol varies depending on the forwarding mode:	НТТР

Parameter	Description	Example Value
Load Balancing Algorithm	Specifies the algorithm used by the load balancer to distribute traffic. The following options are available:	Weighted round robin
	Weighted round robin: Requests are routed to different servers based on their weights. Backend servers with higher weights receive proportionately more requests, whereas equalweighted servers receive the same number of requests.	
	Weighted least connections: In addition to the number of connections, each server is assigned a weight based on its capacity. Requests are routed to the server with the lowest connections-to-weight ratio.	
	Source IP hash: Allows requests from different clients to be routed based on source IP addresses and ensures that requests from the same client are forwarded to the same server.	
	For more information about load balancing algorithms, see Load Balancing Algorithms .	
Sticky Session	Specifies whether to enable sticky sessions if you have selected Weighted round robin or Weighted least connections for Load Balancing Algorithm.	-
	If you enable sticky sessions, all requests from the same client during one session are sent to the same backend server.	
	For more information about sticky sessions, see Sticky Session .	

Parameter	Description	Example Value
Sticky Session Type	Specifies the sticky session type. This parameter is mandatory if Sticky Session is enabled. You can select one of the following type: • Source IP address : The source IP address of each request is calculated using the consistent hashing	Source IP address
	algorithm to obtain a unique hashing key, and all backend servers are numbered. The system allocates the client to a particular server based on the generated key. This allows requests from the same IP address are forwarded to the same backend server.	
	Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the cookie are routed to the same backend server.	
	 Source IP address is available when you have selected TCP or UDP for Backend Protocol. 	
	 Load balancer cookie is available when you have selected HTTP or HTTPS for Backend Protocol. 	
Stickiness Duration (min)	Specifies the minutes that sticky sessions are maintained. This parameter is mandatory if Sticky Session is enabled.	20
	 Sticky sessions at Layer 4: 1 to 60 Sticky sessions at Layer 7: 1 to 1440 	

Parameter	Description	Example Value
Slow Start	Specifies whether to enable slow start. This parameter is optional if you have selected Weighted round robin for Load Balancing Algorithm.	-
	After you enable this option, the load balancer linearly increases the proportion of requests to backend servers in this mode.	
	When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode.	
	NOTE Slow start is only available for HTTP and HTTPS backend server groups of dedicated load balancers.	
	For more information about the slow start, see Slow Start (Dedicated Load Balancers).	
Slow Start Duration (s)	Specifies how long the slow start will last, in seconds.	30
	This parameter is mandatory if Slow Start is enabled.	
Description	Provides supplementary information about the backend server group.	-

7. Click **Next** to add backend servers and configure health check.

Add cloud servers, or IP addresses to this backend server group. For details, see **Overview**.

Configure health check for the backend server group based on **Table 6-17**. For more information about health checks, see **Health Check**.

Table 6-17 Parameters required for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	-
	If the health check is enabled, click next to Advanced Settings to set health check parameters.	

Parameter	Description	Example Value
Health Check Protocol	Specifies the protocol that will be used by the load balancer to check the health of backend servers. The backend protocol can be TCP, HTTP, or HTTPS. If the protocol of the backend server group is UDP, the health check protocol is UDP by default.	НТТР
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Path	Specifies the health check URL, which is the destination on backend servers for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. The path can contain 1 to 80 characters and must start with a slash (/).	/index.html

Parameter	Description	Example Value
Interval (s)	Specifies the maximum time between two consecutive health checks, in seconds.	5
	The interval ranges from 1 to 50 .	
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The interval ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next.
- 9. Confirm the specifications and click **Create Now**.

Related Operations

You can associate the backend server group with the listener of a dedicated load balancer in either ways listed in **Table 6-14**.

6.4 Creating a Backend Server Group (Shared Load Balancers)

Scenario

To route requests, you need to associate a backend server group to each listener.

□ NOTE

This section describes how you can create a backend server group for shared load balancer.

You can create a backend server group in the ways listed in Table 6-18.

Table 6-18 Creating a backend server group

Scenario	Procedure
Creating a backend server group and associating it with a load balancer	Procedure

Scenario	Procedure
Creating a backend server group when adding a listener	You can add listeners using different protocols as required. For details, see Overview.
	References are as follows:
	Adding a TCP Listener
	Adding a UDP Listener
	Adding an HTTP Listener
	Adding an HTTPS Listener
Changing the backend server group associated with the listener	Changing a Backend Server Group

Constraints

- The backend protocol of the new backend server group must match the frontend protocol of the listener as described in **Table 6-3**.
- The backend server group of a shared load balancer can be associated with only one listener.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. Click Create Backend Server Group in the upper right corner.
- 6. Configure the routing policy based on Table 6-19.

Table 6-19 Parameters required for configuring a routing policy

Parameter	Description	Example Value
Load Balancer Type	Specifies the type of load balancers that can use the backend server group.	Shared
Load Balancer	Specifies whether to associate a load balancer.	N/A
Backend Server Group Name	Specifies the name of the backend server group.	server_group

Parameter	Description	Example Value
Backend Protocol	Specifies the protocol that backend servers in the backend server group use to receive requests from the listeners. The protocol varies depending on the forwarding mode:	HTTP
	The options are HTTP, TCP, and UDP.	
Load Balancing Algorithm	 Specifies the algorithm used by the load balancer to distribute traffic. The following options are available: Weighted round robin: Requests are routed to different servers based on their weights. Backend servers with higher weights receive proportionately more requests, whereas equalweighted servers receive the same number of requests. Weighted least connections: In addition to the number of connections, each server is assigned a weight based on its capacity. Requests are routed to the server with the lowest connections-to-weight ratio. Source IP hash: Allows requests from different clients to be routed based on source IP addresses and ensures that requests from the same client are forwarded to the same server. Connection ID: This algorithm is available when you have selected QUIC for Backend Protocol. This algorithm allows requests with different connection IDs to be routed to different backend servers and ensures that requests with the same connection ID are routed to the same backend server. 	Weighted round robin
	For more information about load balancing algorithms, see Load Balancing Algorithms .	
Sticky Sessions	Specifies whether to enable sticky sessions. If you enable sticky sessions, all requests from the same client during one session are sent to the same backend server.	N/A
	For more information about sticky sessions, see Sticky Session .	

Parameter	Description	Example Value
Sticky Session Type	Specifies the type of sticky sessions. After the sticky session is enabled, you need to select a sticky session type:	Source IP address
	Source IP address: The source IP address of each request is calculated using the consistent hashing algorithm to obtain a unique hashing key, and all backend servers are numbered. The system allocates the client to a particular server based on the generated key. This enables requests from different clients to be routed and ensures that a client is directed to the same server that it was using previously.	
	Load balancer cookie: The load balancer generates a cookie after receiving a request from the client. All subsequent requests with the cookie are routed to the same backend server.	
	Application cookie: The application deployed on the backend server generates a cookie after receiving the first request from the client. All subsequent requests with the same cookie are routed to the same backend server.	
	Load balancer cookie is available when you have selected HTTP or HTTPS for Backend Protocol.	
Stickiness Duration (min)	Specifies the time that sticky sessions are maintained, in minutes. • Sticky sessions at Layer 4: 1 to 60 • Sticky sessions at Layer 7: 1 to 1440	20
Description	Provides supplementary information about the backend server group.	N/A

7. Click **Next** to add backend servers and configure health check based on **Table 6-20**. For more information about health checks, see **Health Check**.

Table 6-20 Parameters required for configuring a health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks. If the health check is enabled,	N/A
	click next to Advanced Settings to set health check parameters.	
Health Check Protocol	The health check protocol can be TCP or HTTP.	НТТР
	If the protocol of the backend server group is UDP, the health check protocol is UDP by default.	
Domain Name	Specifies the domain name that will be used for health checks. By default, the private IP address of each backend server is used.	www.elb.com
	A domain name consists of at least two character strings separated by periods (.). The total length of a domain name cannot exceed 100 characters with each character string not exceeding 63 characters. Only letters, digits, and hyphens (-) are allowed. Strings cannot start or end with a hyphen.	
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80

Parameter	Description	Example Value
Path	Specifies the health check URL, which is the destination on backend servers for health checks. The path can contain 1 to 80 characters and must start with a slash (/). The path can contain letters,	/index.html
	digits, hyphens (-), slashes (/), periods (.), question marks (?), number signs (#), percent signs (%), ampersands (&).	
Interval (s)	Specifies the maximum time between two consecutive health checks, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The interval ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

- 8. Click Next.
- 9. Confirm the specifications and click **Create Now**.

6.5 Modifying a Backend Server Group

6.5.1 Overview

After a backend server group is created, you can modify its health check settings and basic information.

Health Check

If backend servers have to handle large number of requests, frequent health checks may overload the backend servers and cause them to respond slowly. To address this problem, you can prolong the health check interval or use TCP or UDP instead of HTTP. You can also disable health check. If you choose to disable health check, requests may be routed to unhealthy servers, and service interruptions may occur.

For details about the health check, see Health Check.

For details about how to modify health check settings, see **Modifying Health Check Settings**.

Basic Information

You can modify the basic information of a backend server group listed in **Table** 6-21.

Table 6-21 Basic information that can be modified

Parameter	Description
Name	Change the name by performing the operations in Changing the Load Balancing Algorithm.
Load Balancing Algorithm	Change the load balancing algorithm by performing the operations in Changing the Load Balancing Algorithm.
	For details about load balancing algorithms, see Load Balancing Algorithms .
Sticky Session	Enable or disable sticky session by performing the operations in Modifying Sticky Session Settings . For details about the sticky session function, see Sticky Session .
Slow Start	Enable or disable slow start by performing the operations in Modifying Slow Start Settings (Dedicated Load Balancers).
	For details about the slow start function, see Slow Start (Dedicated Load Balancers).
Description	Change the description of the backend server group by performing the operations in Changing the Load Balancing Algorithm.

6.5.2 Modifying Health Check Settings

Scenario

This section describes how you can modify the health check settings.

After the protocol is changed, the load balancer uses the new protocol to check the health of backend servers. The load balancer continues to route traffic to the backend servers after they are detected healthy.

Before the new configurations take effect, the load balancer may return the HTTP 503 error code to the clients.

Constraints and Notes

- The health check protocol can be different from the backend protocol.
- To reduce the vCPU usage of the backend servers, it is recommended that you use TCP for health checks. If you want to use HTTP for health checks, you can use static files to return the health check results.

- If health check is enabled, security group rules must allow traffic from the health check port to the backend servers over the health check protocol.
 - Dedicated load balancers: For details, see **Security Group Rules**.

□ NOTE

After you enable health check, the load balancer immediately checks the health of backend servers.

- If a backend server is detected healthy, the load balancer will start routing requests to it
 over new connections based on the configured loading balancing algorithms and
 weights.
- If a backend server is detected unhealthy, the load balancer will stop routing traffic to it.

Enabling Health Check

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** tab page, locate the backend server group.
- 6. On the **Summary** page, click **Health Check** on the right.
- 7. In the **Configure Health Check** dialog box, configure the parameters based on **Table 6-22**.

Table 6-22 Parameters required for configuring health check

Parameter	Description	Example Value
Health Check	Specifies whether to enable health checks.	-
Health Check Protocol	The health check protocol can be TCP, HTTP, or HTTPS.	НТТР
	If the protocol of the backend server group is UDP, the health check protocol is UDP by default.	

Parameter	Description	Example Value
Domain Name	Specifies the domain name that will be used for health checks. This parameter is mandatory if the health check protocol is HTTP or HTTPS. • You can use the private IP address of the backend server as the domain name. • You can also specify a domain name that consists of at least two labels separated by periods (.). Use only letters, digits, and hyphens (-). Do not start or end strings with a hyphen. Max total: 100 characters. Max label: 63 characters.	www.elb.com
Health Check Port	Specifies the port that will be used by the load balancer to check the health of backend servers. The port number ranges from 1 to 65535. NOTE By default, the service port on each backend server is used. You can also specify a port for health checks.	80
Interval (s)	Specifies the maximum time between two consecutive health checks, in seconds. The interval ranges from 1 to 50.	5
Timeout (s)	Specifies the maximum time required for waiting for a response from the health check, in seconds. The interval ranges from 1 to 50.	3
Maximum Retries	Specifies the maximum number of health check retries. The value ranges from 1 to 10 .	3

8. Click **OK**.

Disabling Health Check

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the target backend server group.
- 6. On the **Summary** page, click **Health Check** on the right.
- 7. In the **Configure Health Check** dialog box, disable health check.
- 8. Click OK.

6.5.3 Changing the Load Balancing Algorithm

Scenario

This section describes how you can change the load balancing algorithm.

For details about load balancing algorithms, see **Load Balancing Algorithms**.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the target backend server group and click **Edit** in the **Operation** column.
- 6. In the **Modify Backend Server Group** dialog box, change the load balancing algorithm.
- 7. Click OK.

□ NOTE

The new load balancing algorithm takes effect immediately and will be used to route requests over new connections. However, the previous load balancing algorithm will still be used to route requests over established connections.

6.5.4 Modifying Sticky Session Settings

Scenario

This section describes how you can modify the sticky session settings.

- This section applies to dedicated and shared load balancers.
- You can also configure sticky sessions when adding a listener or creating a backend server group.

Enabling Sticky Session

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the backend server group and click **Edit** in the **Operation** column.
- 6. In the **Modify Backend Server Group** dialog box, enable sticky session, select the sticky session type, and set the session stickiness duration.
- 7. Click **OK**.

Disabling Sticky Session

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the backend server group and click **Edit** in the **Operation** column.
- 6. In the **Modify Backend Server Group** dialog box, disable sticky session.
- 7. Click OK.

6.5.5 Modifying Slow Start Settings (Dedicated Load Balancers)

Scenario

This section describes how you can modify the slow start settings.

For details, see **Slow Start (Dedicated Load Balancers)**.

- This section applies only to dedicated load balancers.
- You can also configure slow start when adding a listener or creating a backend server group.

Enabling Slow Start

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the backend server group and click **Edit** in the **Operation** column.
- 6. In the **Modify Backend Server Group** dialog box, enable slow start and set the slow start duration.

The slow start duration ranges from 30 to 1200 in seconds. When the slow start duration elapses, the load balancer sends full share of requests to backend servers and exits the slow start mode.

7. Click OK.

Disabling slow start

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the backend server group and click **Edit** in the **Operation** column.
- 6. In the **Modify Backend Server Group** dialog box, disable slow start.
- 7. Click OK.

6.6 Changing a Backend Server Group

Scenario

This section describes how you can change the default backend server group configured for a listener.

TCP or UDP listeners forward requests to the default backend server groups.

HTTP or HTTPS listeners forward requests based on the priorities of the forwarding policies. If you do not add a forwarding policy, the listener will route the requests to the default backend server group.

Constraints and Limitations

- The backend server group cannot be changed if redirection is enabled.
- The backend protocol of the backend server group must match the frontend protocol of the listener. For details, see **Table 6-3**.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the target load balancer and click its name.
- 5. On the **Listeners** tab, locate the target listener and click its name.
- 6. On the **Summary** page, click **Change Backend Server Group** on the right.
- 7. In the displayed dialog box, click the server group name box.

 Select a backend server group from the drop-down list or create a group.
 - a. Click the name of the backend server group or enter the name in the search box to search for the target group.
 - b. Click **Create Backend Server Group**. After the backend server group is created, click the refresh icon.

The backend protocol of the new backend server group must match the frontend protocol of the listener.

8. Click OK.

6.7 Viewing a Backend Server Group

Scenario

This section describes how you can view the following information about a backend server group:

- Basic information: the name, ID, and backend protocol
- Health check: whether health check is enabled and health check configurations
- Backend servers: servers that have been added to the backend server group

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.

6.8 Deleting a Backend Server Group

Scenario

This section describes how you can delete a backend server group.

Constraints and Limitations

- Before you delete a backend server group, you need to:
 - Disassociate it from the listener. For details, see Changing a Backend Server Group.
 - Ensure the backend server group is not used by a forwarding policy of an HTTP or HTTPS listener.
- Remove all backend servers from the backend server group.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, locate the backend server group and click **Delete** in the **Operation** column.
- 6. In the displayed dialog box, click **Yes**.

Backend Server (Dedicated Load Balancers)

7.1 Overview

Backend servers receive and process requests from the associated load balancer.

If the incoming traffic increases, you can add more backend servers to ensure the stability and reliability of applications and eliminate SPOFs. If the incoming traffic decreases, you can remove some backend servers to reduce the cost.

If the load balancer is associated with an AS group, instances are automatically added to or removed from the load balancer.

Precautions

- It is recommended that you select backend servers running the same OS for easier management and maintenance.
- The load balancer checks the health of each server added to the associated backend server group if you have configured health check for the backend server group. If the backend server responds normally, the load balancer will consider it healthy. If the backend server does not respond normally, the load balancer will periodically check its health until the backend server is considered healthy.
- If a backend server is stopped or restarted, connections established with the server will be disconnected, and data being transmitted over these connections will be lost. To avoid this from happening, configure the retry function on the clients to prevent data loss.
- If you enable sticky sessions, traffic to backend servers may be unbalanced. If this happens, disable sticky sessions and check the requests received by each backend server.

Constraints and Limitations

A maximum of 500 backend servers can be added to a backend server group.

- Inbound security group rules must be configured to allow traffic over the port
 of each backend server and health check port. For details, see Security Group
 Rules.
- If you select only network load balancing, a server cannot serve as both a backend server and a client.

Backend Server Weights

You need to set a weight for each backend server in a backend server group to receive requests. The higher the weight you have configured for a backend server, the more requests the backend server receives.

You can set an integer from **0** to **100**. If you set the weight of a backend server to **0**, new requests will not be routed to this server.

Three load balancing algorithms allow you to set weights to backend servers, as shown in the following table. For more information about load balancing algorithms, see **Load Balancing Algorithms**.

Table 7-1 Server weights in different load balancing algorithms

Load Balancing Algorithm	Weight Setting	
Weighted round robin	If none of the backend servers have a weight of 0, the load balancer routes requests to backend servers based on their weights. Backend servers with higher weights receive proportionately more requests.	
	If two backend servers have the same weights, they receive the same number of requests.	
Weighted least connections	If none of the backend servers have a weight of 0, the load balancer calculates the load of each backend server using the formula (Overhead = Number of current connections/Backend server weight).	
	The load balancer routes requests to the backend server with the lowest overhead.	
Source IP hash	If none of the backend servers have a weight of 0, requests from the same client are routed to the same backend server within a period of time.	
	If the weight of a backend server is 0, no requests are routed to this backend server.	

7.2 Security Group Rules

Scenarios

To ensure normal communications between the load balancer and backend servers, you need to check the security group rules and network ACL rules configured for the backend servers.

- Security group rules must allow traffic from the backend subnet where the load balancer resides to the backend servers. (By default, the backend subnet of a load balancer is the same as the subnet where the load balancer resides.) For details about how to configure security group rules, see Configuring Security Group Rules.
- Network ACL rules are optional for subnets. If network ACL rules are configured for the backend subnet of the load balancer, the network ACL rules must allow traffic from the backend subnet of the load balancer to the backend servers. For details about how to configure rules, see Configuring Network ACL RulesConfiguring Network ACL Rules.

□ NOTE

If the load balancer has a TCP or UDP listener and IP as a backend is disabled, security group rules and network ACL rules will not take effect.

You can use access control to limit which IP addresses are allowed to access the listener. Learn how to configure **Access Control**.

Constraints and Limitations

- If health check is enabled for a backend server group, security group rules must allow traffic from the health check port over the health check protocol.
- If UDP is used for health check, there must be a rule that allows ICMP traffic to check the health of the backend servers.

Configuring Security Group Rules

If you have no VPCs when creating a server, the system automatically creates one for you. Default security group rules allow only communications among the servers in the VPC. To ensure that the load balancer can communicate with these servers over both the frontend port and health check port, configure inbound rules for security groups containing these servers.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Under **Computing**, click **Elastic Cloud Server**.
- 4. On the **Elastic Cloud Server** page, click the name of the ECS that has been added to a backend server group.
 - The page providing details about the ECS is displayed.
- 5. Click **Security Groups**, locate the security group, and view security group rules.
- 6. Click the ID of a security group rule or **Modify Security Group Rule**. The security group details page is displayed.
- 7. On the **Inbound Rules** tab page, click **Add Rule**. Configure an inbound rule based on **Table 7-2**.

Backend Protocol	Protocol & Port	Source IP Address
HTTP or HTTPS	Protocol: TCP Port: the port used by the backend server and health check port	Backend subnet of the load balancer
ТСР	Protocol: TCP Port: health check port	
UDP	Protocol: UDP and ICMP Port: health check port	

Table 7-2 Security group rules

□ NOTE

- After a load balancer is created, do not change the subnet. If the subnet is changed, the IP addresses occupied by the load balancer will not be released, and traffic from the previous backend subnet is still need to be allowed to backend servers.
- Traffic from the new backend subnet is also need to be allowed to backend servers.
- 8. Click OK.

Configuring Network ACL Rules

To control traffic in and out of a subnet, you can associate a network ACL with the subnet. Network ACL rules control access to subnets and add an additional layer of defense to your subnets.

The default network ACL rule denies all inbound and outbound traffic. You can configure an inbound rule to allow traffic from the backend subnet of the load balancer through the port of the backend server.

Network ACL rules configured for the backend subnet of the load balancer will not restrict the traffic from the clients to the load balancer. If network ACL rules are configured, the clients can directly access the load balancer. To control access to the load balancer, configure access control for all listeners added to the load balancer by performing the operations in **Access Control**.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Virtual Private Cloud**.
- 4. In the navigation pane on the left, choose Access Control > Network ACLs.
- 5. In the network ACL list, click the name of the network ACL to switch to the page showing its details.

- 6. On the **Inbound Rules** or **Outbound Rules** tab page, click **Add Rule** to add an inbound or outbound rule.
 - **Type**: Select the same type as the backend subnet of the load balancer.
 - **Protocol**: The protocol must be the same as the backend protocol.
 - **Source**: Set it to the backend subnet of the load balancer.
 - **Source Port Range**: Select a port range.
 - Destination: Enter a destination address allowed in this direction. The
 default value is 0.0.0.0/0, which indicates that traffic from all IP
 addresses is permitted.
 - Destination Port Range: Select a port range.
 - (Optional) **Description**: Describe the network ACL rule.
- 7. Click OK.

7.3 Managing Backend Servers

7.3.1 Adding Backend Servers

Scenario

When you use ELB to route traffic to backend servers, you need to ensure that at least one backend server is running properly and can receive requests from the associated load balancer.

If the incoming traffic increases, you can add more backend servers to ensure the stability and reliability of applications and eliminate SPOFs. If the incoming traffic decreases, you can remove some backend servers to reduce the cost.

Constraints and Limitations

• The cloud servers must be in the same VPC as the backend server group.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Add** on the right.
- 7. You can search for backend servers using specified keywords. Select the backend servers you want to add and click **Next**.

8. Specify the weights and ports for the backend servers, and click **Finish**. Backend server ports can be set in batches.

7.3.2 Viewing Backend Servers

Scenario

You can view backend servers that have been added to a backend server group, including their status, private IP addresses, health check results, weights, and ports.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. In the backend server list, view the backend servers.

7.3.3 Removing Backend Servers

Scenario

You can remove a backend server that is no longer needed from a backend server group.

Once a backend server is removed, it is disassociated from the load balancer and will no longer receive requests from the load balancer. The backend server still exists. You can add the backend server to the backend server group again when traffic increases or the reliability needs to be enhanced.

Notes

After the backend server is removed, requests are still routed to it. This is because a persistent connection is established between the load balancer and the backend server and requests are routed to this server until the TCP connection times out.

If no data is transmitted over this TCP connection after it times out, ELB disconnects the connection.

Procedure

1. Log in to the management console.

- 2. In the upper left corner of the page, click and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. Select the backend servers you want to remove and click **Remove** above the backend server list.
- 8. In the displayed dialog box, click Yes.

7.3.4 Changing Backend Server Weights

Scenario

You can change the weights configured for backend servers based on their capability to process requests.

Constraints and Limitations

- You can set an integer from **0** to **100**. If you set the weight of a backend server to **0**, new requests will not be routed to this server.
- The weights can only be specified when you select weighted round robin, weighted least connections, or source IP hash as the load balancing algorithm. For more information about load balancing algorithms, see **Backend Server Weights**.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. Select the backend servers and click **Modify Port/Weight** up above the backend server list.
- 8. In the displayed dialog box, modify weights as you need.
 - Modifying weights:

- Changing the weight of a single backend server: Set the weight in the New Weight column.
- Changing the weights of multiple backend servers: Set the weight next to Batch Modify Weights and click OK.

□ NOTE

You can change the weights of multiple backend servers to **0** so that they will not receive requests from the load balancer.

9. Click OK.

7.4 IP Addresses as Backend Servers

7.4.1 Overview

Dedicated load balancers support hybrid load balancing. You can add servers and supplementary network interfaces in the VPC where the load balancer is created, in a different VPC, or in an on-premises data center, by using private IP addresses of the servers to the backend server group of the load balancer.

In this way, incoming traffic can be flexibly distributed to cloud servers and onpremises servers.

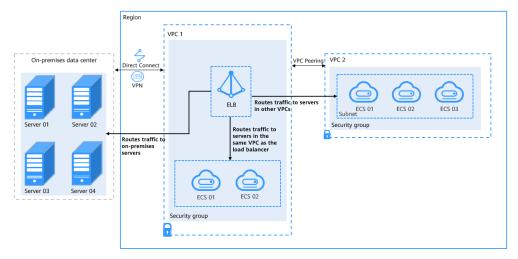


Figure 7-1 Routing requests to cloud and on-premises servers

Constraints and Limitations

- IP as a backend cannot be disabled after it is enabled.
- Only private IPv4 addresses can be added as backend servers.
- A maximum of 50,000 concurrent connections can be established with a backend server that is added by using its IP address.
- If you add IP addresses as backend servers, the source IP addresses of the clients cannot be passed to these servers.

Scenario

After you enable IP as a backend, you can add backend servers by using their IP addresses. You need to get prepared for different scenarios as shown in **Table 7-3**.

Table 7-3 Adding IP addresses as backend servers

Where Servers Are Running	Preparations
In a different VPC from the load balancer	Set up a VPC peering connection between the VPC where the load balancer is running and the VPC where the servers are running.
	For details about how to set up a VPC peering connection, see the Virtual Private Cloud User Guide.
In on-premises data centers	Connect the on-premises data center to the VPC where the load balancer is running through Direct Connect or VPN. For details about how to connect on-premises data centers to the cloud, see the Direct Connect User Guide or Virtual Private Network User Guide.

7.4.2 Enabling IP as a Backend

Scenario

You can enable IP as a backend for an existing dedicated load balancer.

Constraints and Limitations

• IP as a backend cannot be disabled after it is enabled.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. On the **Load Balancers** page, locate the load balancer and click its name.
- 5. On the **Summary** tab page, click **Enable** next to **IP as a Backend**.
- 6. Click OK.

7.4.3 Adding IP Addresses as Backend Servers

Scenario

If you enable IP as a backend, you can associate backend servers with the load balancer by using their IP addresses.

You need to get prepared for different scenarios as shown in Table 7-4.

Table 7-4 Adding IP addresses as backend servers

Where Servers Are Running	Preparations
In a different VPC from the load balancer	Set up a VPC peering connection between the VPC where the load balancer is running and the VPC where the servers are running.
	For details about how to set up a VPC peering connection, see the Virtual Private Cloud User Guide.
In on-premises data centers	Connect the on-premises data center to the VPC where the load balancer is running through Direct Connect or VPN. For details about how to connect on-premises data centers to the cloud, see the Direct Connect User Guide or Virtual Private Network User Guide.

Constraints and Limitations

- If IP as a backend is not enabled when you create a load balancer, you can enable it on the **Summary** page of the load balancer.
- Only private IPv4 addresses can be added as backend servers.
- The backend subnet of the load balancer must have sufficient IP addresses.
 Otherwise, backend servers cannot be added through IP addresses. If the IP addresses are insufficient, you can add more backend subnets on the Summary page of the load balancer.
- Security group rules of backend servers added through IP addresses must allow traffic from the backend subnet of the load balancer. If traffic is not allowed, health checks will fail.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.

- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Add** on the **IP as Backend Servers** area.
- 7. Specify the IP addresses, ports, and weights for the backend servers.
- 8. Click OK.

7.4.4 Viewing Backend Servers

Scenario

You can view backend servers added to a backend server group, including their IP addresses, health check results, weights, and ports.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **IP as Backend Servers**.
- 7. In the backend server list, view the added backend servers.

7.4.5 Removing Backend Servers

Scenario

You can remove backend servers from a backend server group when you do not need them to process requests.

Notes

After the backend server is removed, requests are still routed to it. This is because a persistent connection is established between the load balancer and the backend server and requests are routed to this server until the TCP connection times out.

If no data is transmitted over this TCP connection after it times out, ELB disconnects the connection.

Procedure

1. Log in to the management console.

- 2. In the upper left corner of the page, click and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **IP as Backend Servers**.
- 7. Select the backend servers to be removed and click **Remove** above the backend server list.
- 8. In the displayed dialog box, click Yes.

7.4.6 Changing Backend Server Weights

Scenario

You can change the weights specified for backend servers based on their capability to process requests.

Constraints and Limitations

- You can set an integer from **0** to **100**. If you set the weight of a backend server to **0**, new requests will not be routed to this server.
- The weights can only be specified when you select weighted round robin, weighted least connections, or source IP hash as the load balancing algorithm. For more information about load balancing algorithms, see Backend Server Weights.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- Switch to the Backend Servers tab page and click IP as Backend Servers.
- 7. Select the backend servers and click **Modify Port/Weight** up the backend server list.
- 8. In the displayed dialog box, modify weights as you need.
 - Modifying weights:

- Changing the weight of a single backend server: Set the weight in the New Weight column.
- Changing the weights of multiple backend servers: Set the weight next to Batch Modify Weights and click OK.

□ NOTE

You can change the weights of multiple backend servers to **0** so that they will not receive requests from the load balancer.

9. Click OK.

8 Backend Server (Shared Load Balancers)

8.1 Overview

Backend servers receive and process requests from the associated load balancer.

If the incoming traffic increases, you can add more backend servers to ensure the stability and reliability of applications and eliminating SPOFs. If the incoming traffic decreases, you can remove some backend servers to reduce the cost.

If the load balancer is associated with an AS group, instances are automatically added to or removed from the load balancer.

You can only add servers in the same VPC as the load balancer. For details, see **Adding Backend Servers**.

Precautions

- It is recommended that you select backend servers running the same OS for easier management and maintenance.
- The load balancer checks the health of each server added to the associated backend server group if you have configured health check for the backend server group. If the backend server responds normally, the load balancer will consider it healthy. If the backend server does not respond normally, the load balancer will periodically check its health until the backend server is considered healthy.
- If a backend server is stopped or restarted, connections established with the server will be disconnected, and data being transmitted over these connections will be lost. To avoid this from happening, configure the retry function on the clients to prevent data loss.
- If you enable sticky sessions, traffic to backend servers may be unbalanced. If this happens, disable sticky sessions and check the requests received by each backend server.

Constraints and Limitations

• A maximum of 500 backend servers can be added to a backend server group.

Backend Server Weights

You need to set a weight for each backend server in a backend server group to receive requests. The higher the weight you have configured for a backend server, the more requests the backend server receives.

You can set an integer from **0** to **100**. If you set the weight of a backend server to **0**, new requests will not be routed to this server.

Three load balancing algorithms allow you to set weights to backend servers, as shown in the following table. For more information about load balancing algorithms, see **Load Balancing Algorithms**.

Table 8-1 Server weights in different load balancing algorithms

Load Balancing Algorithm	Weight Setting	
Weighted round robin	If none of the backend servers have a weight of 0, the load balancer routes requests to backend servers based on their weights. Backend servers with higher weights receive proportionately more requests.	
	If two backend servers have the same weights, they receive the same number of requests.	
Weighted least connections	If none of the backend servers have a weight of 0, the load balancer calculates the load of each backend server using the formula (Overhead = Number of current connections/Backend server weight).	
	The load balancer routes requests to the backend server with the lowest overhead.	
Source IP hash	If none of the backend servers have a weight of 0, requests from the same client are routed to the same backend server within a period of time.	
	If the weight of a backend server is 0, no requests are routed to this backend server.	

8.2 Security Group Rules

To ensure normal communications between the load balancer and backend servers, you need to check the security group rules and network ACL rules configured for the backend servers.

When backend servers receive requests from the load balancer, source IP addresses are translated into those in 100.125.0.0/16.

- Security group rules must allow traffic from the 100.125.0.0/16 and 100.126.0.0/16 to backend servers. For details about how to configure security group rules, see Configuring Security Group Rules.
- Network ACL rules are optional for subnets. If network ACL rules are configured for the backend subnet of the load balancer, the network ACL

rules must allow traffic from the backend subnet of the load balancer to the backend servers. For details about how to configure these rules, see **Configuring Network ACL Rules**.

□ NOTE

If **Transfer Client IP Address** is enabled for the TCP or UDP listeners, network ACL rules and security group rules will not take effect. You can use access control to limit which IP addresses are allowed to access the listener. Learn how to configure access control.

Constraints and Limitations

- If health check is enabled for a backend server group, security group rules must allow traffic from the health check port over the health check protocol.
- If UDP is used for health check, there must be a rule that allows ICMP traffic. If there is no such rule, the health of the backend servers cannot be checked.

Configuring Security Group Rules

If you have no VPCs when creating a server, the system automatically creates one for you. Default security group rules allow only communications among the servers in the VPC. To ensure that the load balancer can communicate with these servers over both the frontend port and health check port, configure inbound rules for security groups containing these servers.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Under Computing, click Elastic Cloud Server.
- 4. On the **Elastic Cloud Server** page, click the name of the ECS that has been added to a backend server group.
 - The page providing details about the ECS is displayed.
- 5. Click **Security Groups**, locate the security group, and view security group rules.
- 6. Click the ID of a security group rule or **Modify Security Group Rule**. The security group details page is displayed.
- 7. On the **Inbound Rules** tab page, click **Add Rule**. Configure an inbound rule based on **Table 8-2**.

Table 8-2 Security group rules

Backend Protocol	Policy	Protocol & Port	Source IP Address
НТТР	Allow	Protocol: TCP Port: the port used by the backend server and health check port	100.125.0.0/16 and 100.126.0.0/16

Backend Protocol	Policy	Protocol & Port	Source IP Address
ТСР	Allow	Protocol: TCP Port: health check port	100.125.0.0/16 and 100.126.0.0/16
UDP	Allow	Protocol: UDP and ICMP Port: health check port	100.125.0.0/16 and 100.126.0.0/16

8. Click OK.

Configuring Network ACL Rules

To control traffic in and out of a subnet, you can associate a network ACL with the subnet. Network ACL rules control access to subnets and add an additional layer of defense to your subnets. Default network ACL rules reject all inbound and outbound traffic. If the subnet of a load balancer or associated backend servers has a network ACL associated, the load balancer cannot receive traffic from the Internet or route traffic to backend servers, and backend servers cannot receive traffic from and respond to the load balancer.

Configure an inbound network ACL rule to permit access from 100.125.0.0/16 and 100.126.0.0/16.

ELB translates the public IP addresses used to access backend servers into private IP addresses in 100.125.0.0/16 and 100.126.0.0/16. You cannot configure rules to prevent public IP addresses from accessing backend servers.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Virtual Private Cloud.
- 4. In the navigation pane on the left, choose **Access Control** > **Network ACLs**.
- 5. In the network ACL list, click the name of the network ACL to switch to the page showing its details.
- 6. On the **Inbound Rules** or **Outbound Rules** tab page, click **Add Rule** to add an inbound or outbound rule.
 - Action: Select Allow.
 - Protocol: The protocol must be the same as the backend protocol.
 - **Source**: Set it to **100.125.0.0/16 and 100.126.0.0/16**.
 - Source Port Range: Select a port range.
 - Destination: Enter a destination address allowed in this direction. The
 default value is 0.0.0.0/0, which indicates that traffic from all IP
 addresses is permitted.

- Destination Port Range: Select a port range.
- (Optional) **Description**: Describe the network ACL rule.
- 7. Click OK.

8.3 Managing Backend Servers

8.3.1 Adding Backend Servers

Scenario

You can add backend servers to a backend server group to process requests from clients.

When you use ELB to route requests, ensure that at least one backend server is running properly and can receive requests routed by the load balancer.

After a backend server is unbound from a load balancer, the backend server does not receive requests forwarded by the load balancer, but the backend server is disassociated from the load balancer. You can add the backend server to the backend server group again when traffic increases or the reliability needs to be enhanced.

Constraints and Limitations

Only servers in the same VPC as the load balancer can be added.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 1. On the **Backend Server Groups** page, click the name of the backend server group.
- 2. Switch to the **Backend Servers** tab page and click **Add** on the right.
- 3. Search for backend servers using specified keywords.
- 4. Specify the weights and ports for the backend servers, and click **Finish**. Backend server ports can be set in batches.

8.3.2 Viewing Backend Servers

Scenario

You can view backend servers that have been added to a backend server group, including their status, private IP addresses, health check results, weights, and ports.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. In the backend server list, view the backend servers.

8.3.3 Removing Backend Servers

Scenario

You can remove a backend server that is no longer needed from a backend server group.

Once a backend server is removed, it is disassociated from the load balancer and will no longer receive requests from the load balancer. The backend server still exists. You can add the backend server to the backend server group again when traffic increases or the reliability needs to be enhanced.

Notes

After the backend server is removed, requests are still routed to it. This is because a persistent connection is established between the load balancer and the backend server and requests are routed to this server until the TCP connection times out.

If no data is transmitted over this TCP connection after it times out, ELB disconnects the connection.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. Select the backend servers you want to remove and click **Remove** above the backend server list.
- 8. In the displayed dialog box, click Yes.

8.3.4 Changing Backend Server Weights

Scenarios

You can change the weights specified for backend servers based on their capability to process requests.

Constraints and Limitations

- You can set an integer from **0** to **100**. If you set the weight of a backend server to **0**, new requests will not be routed to this server.
- The weights can only be specified when you select weighted round robin, weighted least connections, or source IP hash as the load balancing algorithm. For more information about load balancing algorithms, see Backend Server Weights.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **Backend Server Groups**.
- 5. On the **Backend Server Groups** page, click the name of the backend server group.
- 6. Switch to the **Backend Servers** tab page and click **Backend Servers**.
- 7. Select the backend servers and click **Modify Weight** up above the backend server list.
- 8. In the displayed dialog box, modify weights as you need.
 - Changing the weight of a single backend server: Set the weight in the Weight column.
 - Changing the weights of multiple backend servers: Set the weight next to **Batch Modify Weights** and click **OK**.

MOTE

You can change the weights of multiple backend servers to **0** so that they will not receive requests from the load balancer.

9. Click OK.

9 Certificate

9.1 Introduction to Certificates

ELB supports two types of certificates. If you need an HTTPS listener, you need to bind a server certificate to it. To enable mutual authentication, you also need to bind a CA certificate to the listener.

- **Server certificate**: used for SSL handshake negotiations if an HTTPS listener is used. Both the certificate content and private key are required.
- CA certificate: issued by a certificate authority (CA) and used to verify the certificate issuer. If HTTPS mutual authentication is required, HTTPS connections can be established only when the client provides a certificate issued by a specific CA.

Precautions

- A certificate can be used by multiple load balancers but only needs to be uploaded to each load balancer once.
- You must specify a domain name for an SNI certificate. The domain name must be the same as that in the certificate.
- For each certificate type, a listener can have only one certificate by default, but a certificate can be bound to more than one listener. If SNI is enabled for the listener, multiple server certificates can be bound.
- Only original certificates are supported. That is to say, you cannot encrypt your certificates.
- You do not need to configure certificates for both shared load balancers and associated backend servers. If you configure a certificate for backend servers, HTTPS listeners cannot be added to the load balancer. In this case, you can add a TCP listener to transparently transmit HTTPS traffic to backend servers. This restriction does not apply to dedicated load balancers.
- You can use self-signed certificates. However, note that self-signed certificates
 pose security risks. Therefore, it is recommended that you use certificates
 issued by third parties.
- ELB supports certificates only in PEM format. If you have a certificate in any other format, you must convert it to a PEM-encoded certificate.

• If a certificate has expired, you need to manually replace or delete it.

9.2 Certificate and Private Key Format

Certificate Format

You can copy and paste the certificate body to create a certificate or directly upload the certificate.

A certificate issued by the Root CA is unique, and no additional certificates are required. The configured site is considered trustable by access devices such as a browser.

The body of the server and CA certificates must meet the following requirements:

- The content starts with -----BEGIN CERTIFICATE----- and ends with -----END CERTIFICATE-----.
- Each row contains 64 characters except the last row.
- There are no empty rows.

The following is an example:

-----REGIN CERTIFICATE----MIIDIjCCAougAwlBAgIJALV96mEtVF4EMA0GCSqGSIb3DQEBBQUAMGoxCzAJBqNV BAYTAnh4MQswCQYDVQQIEwJ4eDELMAkGA1UEBxMCeHqxCzAJBqNVBAoTAnh4MQsw CQYDVQQLEwJ4eDELMAkGA1UEAxMCeHqxGjAYBqkqhkiG9w0BCQEWC3h4eEAxNjMu Y29tMB4XDTE3MTExMzAyMjYxM1oXDTIwMTExMjAyMjYxM1owajELMAkGA1UEBhMC eHgxCzAJBgNVBAgTAnh4MQswCQYDVQQHEwJ4eDELMAkGA1UEChMCeHgxCzAJBgNV BAsTAnh4MQswCQYDVQQDEwJ4eDEaMBgGCSqGSIb3DQEJARYLeHh4QDE2My5jb20w gZ8wDQYJKoZlhvcNAQEBBQADgY0AMIGJAoGBAMU832iM+d3FlLgTWmpZBUoYclWV cAAYE7FsZ9LNerOyjJpyi256oypdBvGs9JAUBN5WaFk81UQx29wAyNixX+bKa0DB WpUDqr84V1f9vdQc75v9WoujcnlKszzpV6qePPC7igJJpu4QOI362BrWzJCYQbg4 Uzo1KYBhLFxl0TovAgMBAAGjgc8wgcwwHQYDVR0OBBYEFMbTvDyvE2KsRy9zPq/J WOjovG+WMIGcBgNVHSMEgZQwgZGAFMbTvDyvE2KsRy9zPq/JWOjovG+WoW6kbDBq MQswCQYDVQQGEwJ4eDELMAkGA1UECBMCeHgxCzAJBgNVBAcTAnh4MQswCQYDVQQK EwJ4eDELMAkGA1UECxMCeHqxCzAJBqNVBAMTAnh4MRowGAYJKoZlhvcNAQkBFqt4 eHhAMTYzLmNvbYIJALV96mEtVF4EMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEF BQADgYEAASkC/1iwiALa2RU3YCxqZFEEsZZvQxikrDkDbFeoa6Tk49Fnb1f7FCW6 PTtY3HPWl5ygsMsSy0Fi3xp3jmulwzJhcQ3tcK5gC99HWp6Kw37RL8WoB8GWFU0Q 4tHLOjBIxkZROPRhH+zMIrqUexv6fsb3NWKhnlfh1Mj5wQE4Ldo= ----END CERTIFICATE---

Private Key Format

When creating a server certificate, you also need to upload the private key of the certificate. You can copy and paste the private key content or directly upload the private key in the required format.

Private keys must be unencrypted and meet the following requirements:

- The value must be in PEM format.
 - The content must start with ----BEGIN RSA PRIVATE KEY---- and end with ----END RSA PRIVATE KEY----.
 - The content must start with ----BEGIN EC PRIVATE KEY---- and end with ----END EC PRIVATE KEY----.
- There are no empty rows. Each row must contain 64 characters except the last row.

The following is an example:

-----BEGIN RSA PRIVATE KEY----MIICXQIBAAKBgQDFPN9ojPndxSC4E1pqWQVKGHCFlXAAGBOxbGfSzXqzsoyacotu
eqMqXQbxrPSQFATeVmhZPNVEMdvcAMjYsV/mymtAwVqVA6q/OFdX/b3UHO+b/VqL
o3J5SrM86Veqnjzwu4oCSabuEDiN+tga1syQmEG4OFM6NSmAYSxcZdE6LwIDAQAB
AoGBAJvLzICyIsCJcKHWL6onbSUtDtyFwPViD1QrVAtQYabF14g8CGUZG/9fgheu
TXPtTDcvu7cZdUArvgYW3J9F9IBb2lmF3a44xfiAKdDhzr4DK/vQhvHPuuTeZA41
r2zp8Cu+Bp40pSxmoAOK3B0/peZAka01Ju7c7ZChDWrxleHZAkEA/6dcaWHotfGS
eW5YLbSms3f0m0GH38nRl7oxyCW6yMIDkFHURVMBKW1OhrcuGo8u0nTMi5IH9gRg
5bH8XcujlQJBAMWBQgzCHyoSeryD3TFieXIFzgDBw6Ve5hyMjUtjvgdVKoxRPvpO
kclc39QHP6Dm2wrXXHEej+9RILxBZCVQNbMCQQC42i+Ut0nHvPuXN/UkXzomDHde
h1ySsOAO4H+8Y6OSI87l3HUrByCQ7stX1z3L0HofjHqV9Koy9emGTFLZEzSdAkB7
Ei6cUKKmztkYe3rr+RcATEmwAw3tEJOHmrW5ErApVZKr2TzLMQZ7WZpIPzQRCYnY
2ZZLDuZWFFG3vW+wKKktAkAaQ5GNzbwkRLpXF1FZFuNF7erxypzstbUmU/31b7tS
i5LmxTGKL/xRYtZEHjya4lkkkgt40q1MrUsgIYbFYMf2

9.3 Converting Certificate Formats

----END RSA PRIVATE KEY---

Scenarios

ELB supports certificates only in PEM format. If you have a certificate in any other format, you must convert it to a PEM-encoded certificate. There are some common methods for converting a certificate from any other format to PEM.

From DER to PEM

The DER format is usually used on a Java platform.

Run the following command to convert the certificate format:

openssl x509 -inform der -in certificate.cer -out certificate.pem

Run the following command to convert the private key format:

openssl rsa -inform DER -outform PEM -in privatekey.der -out privatekey.pem

From P7B to PEM

The P7B format is usually used by Windows Server and Tomcat.

Run the following command to convert the certificate format:

openssl pkcs7 -print_certs -in incertificate.p7b -out outcertificate.cer

From PFX to PEM

The PFX format is usually used by Windows Server.

Run the following command to convert the certificate format:

openssl pkcs12 -in certname.pfx -nokeys -out cert.pem

Run the following command to convert the private key format:

openssl pkcs12 -in certname.pfx -nocerts -out key.pem -nodes

9.4 Adding, Modifying, or Deleting a Certificate

Scenarios

To enable authentication for securing data transmission over HTTPS, you can add certificates to your load balancers. You can also modify and delete certificates.

MOTE

• A certificate can be bound to only one type of load balancer. Ensure that you have selected the correct type.

Adding a Certificate

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Certificates**.
- 5. Click **Add Certificate**. In the **Add Certificate** dialog box, configure the parameters.
 - Certificate Name
 - Certificate Type
 - Server certificate: used for SSL handshake negotiations if an HTTPS listener is used. Both the certificate content and private key are required.
 - CA certificate: issued by a certificate authority (CA) and used to verify the certificate issuer. If HTTPS mutual authentication is required, HTTPS connections can be established only when the client provides a certificate issued by a specific CA.
 - Enterprise Project
 - Certificate Content: The content must be in PEM format. This parameter
 is mandatory when Certificate Type is set to Server certificate or CA
 certificate.

Click **Upload** and select the certificate to be uploaded. Ensure that your browser is of the latest version.

The format of the certificate body is as follows:

```
----BEGIN CERTIFICATE----
Base64–encoded certificate
----END CERTIFICATE----
```

 Private Key: This parameter is mandatory when Certificate Type is set to Server certificate.

Click **Upload** and select the private key to be uploaded. Ensure that your browser is of the latest version.

The value must be an unencrypted private key. The private key must be in PEM format. The format is as follows:

```
----BEGIN PRIVATE KEY-----
[key]
----END PRIVATE KEY-----
```


If there is a certificate chain, you need to configure the certificates in the following sequence: sub-certificate (server certificate), intermediate certificate, and root certificate. If the root certificate has been preset on the server and is not contained in the issued certificates, first configure the sub-certificate (server certificate) and then the intermediate certificate.

For example, if a CA issued a private key **private.key** and two certificates: a sub-certificate (server certificate) **server.cer** and an intermediate certificate **mid.crt**, paste the content of **server.cer** in the **Certificate** text box, press **Enter**, then paste the content of **mid.crt** in the **Certificate** text box, and paste the content of **private.key** in the **Private Key** text box to make the entire certificate chain take effect. The format of the certificate body in a certificate chain is as follows:

Certificate body

```
----BEGIN CERTIFICATE-----
Content of the server certificate server.cer
-----END CERTIFICATE-----
Content of the intermediate certificate mid.crt
-----END CERTIFICATE-----
```

Private key

```
----BEGIN PRIVATE KEY----
Content of the private key private.key
----END PRIVATE KEY----
```

Domain Name

If the created certificate will be used for SNI, you need to specify a domain name for each certificate, and the domain name must be the same as that in the certificate.

- Description
- 6. Click **OK**.

Modifying a Certificate

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Certificates**.
- 5. Locate the certificate and click **Modify** in the **Operation** column.
- 6. Modify the parameters as required.
- 7. Confirm the information and click **OK**.

Deleting a Certificate

Only certificates that are not in use can be deleted.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Certificates**.
- 5. Locate the certificate and click **Delete** in the **Operation** column.
- 6. Click Yes.

9.5 Replacing the Certificate Bound to a Listener

Scenarios

You need to bind a certificate when you add an HTTPS listener to a load balancer. If the certificate used by a listener has expired or needs to be replaced due to other reasons, you can replace the certificate on the **Listeners** tab page.

If the certificate is also used by other services such as WAF, replace the certificate on all these services to prevent service unavailability.

□ NOTE

Replacing certificates and private keys does not affect your applications.

Prerequisites

You have created a certificate by following the instructions in **Adding a Certificate**.

Binding a Certificate

You can bind certificates when you add an HTTPS listener. For details, see **Adding** an HTTPS Listener.

Replacing a Certificate

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click the **Listeners** tab, locate the listener, and click **Edit** in **Operation** column.

- 6. Select a server certificate.
- 7. Click **OK** in the **Edit** dialog box.

9.6 Replacing the Certificate Bound to Different Listeners

Scenario

If the certificate that is bound to different listeners has expired or needs to be replaced due to other reasons, you can replace the certificate by modifying it on the **Certificates** page.

Replacing the certificate and private keys does not affect your applications.

Constraints

- Only HTTPS listeners require certificates.
- The new certificate takes effect immediately.

Modifying a Certificate

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Certificates**.
- 5. Locate the certificate and click **Modify** in the **Operation** column.
- 6. Modify the parameters as required.
- 7. Confirm the information and click **OK**.

9.7 Querying Listeners by Certificate

Scenarios

You need to quickly view details of the listeners to which a certificate is bound.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Certificates**.
- 5. In the certificate list, click the listener name in the **Listener (Frontend Protocol/Port)** column to view its details.

If there are more than 5 listeners, no listener is displayed in the **Listener** (Frontend Protocol/Port) column. Click View All. On the displayed page, click **Listeners**, locate the listener, and click its name to view it details.

10 Access Control

10.1 Access Control

Access control allows you to add a whitelist or blacklist to specify IP addresses that are allowed or denied to access a listener. A whitelist allows specified IP addresses to access the listener, while a blacklist denies access from specified IP addresses.

NOTICE

- Adding the whitelist or blacklist may cause risks.
 - Once the whitelist is set, only the IP addresses specified in the whitelist can access the listener.
 - Once the blacklist is set, the IP addresses specified in the blacklist cannot access the listener.
- Whitelists and blacklists do not conflict with inbound security group rules.
 Whitelists define the IP addresses that are allowed to access the listeners, while blacklists specify IP addresses that are denied to access the listeners. Inbound security group rules control access to backend servers by specifying the protocol, ports, and IP addresses.
- Access control does not restrict the ping command. You can still ping backend servers from the restricted IP addresses.
 - To ping the IP address of a shared load balancer, you need to add a listener and associate a backend server to it.
 - To ping the IP address of a dedicated load balancer, you only need to add a listener to it.
- Access control policies only take effect for new connections, but not for connections that have been established. If a whitelist is configured for a listener but IP addresses that are not in the whitelist can access the backend server associated with the listener, one possible reason is that a persistent connection is established between the client and the backend server. To deny IP addresses that are not in the whitelist from accessing the listener, the persistent connection between the client and the backend server needs to be disconnected.

Configuring Access Control

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.
- 5. You can configure access control for a listener in either of the following ways:
 - On the Listeners page, locate the listener and click Configure in the Access Control column.
 - Click the name of the target listener. On the Summary page, click
 Configure on the right of Access Control.
- 6. In the displayed **Configure Access Control** dialog box, configure parameters as shown in **Table 10-1**.

Table 10-1 Parameter description

Parameter	Description	Example Value
Access Control	Specifies how access to the listener is controlled. Three options are available: • All IP addresses: All IP addresses can access the listener. • Whitelist: Only IP addresses in the IP address group can access the listener. • Blacklist: IP addresses in the IP address group are not allowed to access the listener.	Blacklist
IP Address Group	Specifies the IP address group associated with a whitelist or blacklist. If there is no IP address group, create one first. For more information, see IP Address Group Overview.	ipGroup-b2
Access Control	If you have set Access Control to Whitelist or Blacklist, you can enable or disable access control. Only after you enable access control, the whitelist or blacklist takes effect. If you disable access control, the whitelist or blacklist does not take effect.	N/A

7. Click **OK**.

10.2 Managing IP Address Groups

10.2.1 Creating an IP Address Group

IP Address Group Overview

An IP address group is a collection of IP addresses that you can use to manage IP addresses with the same security requirements or whose security requirements change frequently.

ELB allows you to use a whitelist or blacklist for access control. If you want to configure an **access control** policy, you must select an IP address group.

- Whitelist: Only IP addresses in the IP address group can access the listener. If the IP address group does not contain any IP address and you have selected whitelist for access control, no IP addresses can access the listener.
- **Blacklist**: IP addresses in the IP address group are denied to access the listener. If the IP address group does not contain any IP address and you have selected blacklist for access control, all IP addresses can access the listener.

Constraints

- By default, you can create a maximum of 50 IP address groups.
- An IP address group can be associated with a maximum of 50 listeners.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the displayed page, click **Create IP Address Group**.
- 6. Configure the parameters based on Table 10-2.

Table 10-2 Parameters required for creating an IP address group

Parameter	Description	Example Value
Name	Specifies the name of the IP address group.	ipGroup-01
Enterprise Project	Specifies an enterprise project by which cloud resources and members are centrally managed. For details, see the <i>Enterprise Management User Guide</i> .	-

Parameter	Description	Example Value
IP Addresses	Specifies IPv4 or IPv6 IP addresses or CIDR blocks that are added to the whitelist or blacklist for access control.	10.168.2.24 10.168.16.0/24
	Each line must contain an IP address or a CIDR block and end with a line break.	
	Each IP address or CIDR block can include a description with a vertical bar () separated, for example, 192.168.10.10 ECS01. The description is 0 to 255 characters long and cannot contain angle brackets (<>).	
	You can add a maximum of 300 IP addresses or CIDR blocks in each IP address group.	
Description	Provides supplementary information about the IP address group.	-

7. Click OK.

10.2.2 Viewing the Details of an IP Address Group

Scenarios

This section describes how you can view information about an IP address group, including:

- Name, ID, and creation time
- IP addresses and CIDR blocks
- Associated listeners

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the **IP Address Groups** page, click the name of the target address group.
- 6. Viewing basic information about the IP address group.

- On the IP Addresses tab, view the IP addresses.
- b. On the **Associated Listeners** tab, view the listeners associated with the IP address group.

10.2.3 Managing IP Addresses in an IP Address Group

After an IP address group is created, you can manage the IP addresses in an IP address group as required:

- Adding IP Addresses
- Changing IP Addresses
- Deleting an IP Address

Constraints

The IP addresses can be in the following formats:

- Each line must contain an IP address or a CIDR block and end with a line break.
- Each IP address or CIDR block can include a description with a vertical bar (|) separated, for example, 192.168.10.10 | ECS01. The description is 0 to 255 characters long and cannot contain angle brackets (<>).
- You can add a maximum of 300 IP addresses or CIDR blocks in each IP address group.

Adding IP Addresses

After an IP address group is created, you can add IP addresses to an IP address group.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the **IP Address Groups** page, click the name of the target address group.
- 6. In the lower part of the displayed page, choose **IP Addresses** tab and click **Add IP Addresses**.
- 7. On the **Add IP Addresses** page, add IP addresses.
- 8. Click OK.

Changing IP Addresses

You can perform the following steps to change all IP addresses in an IP address group:

1. Log in to the management console.

- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the IP Address Groups page, you can:
 - a. Modify the basic information and change IP addresses of an IP address group:
 - i. Locate the target address group, click **Modify** in the **Operation** column.
 - ii. You can modify the name and description of an IP address group, and change all its IP addresses.
 - iii. Click OK.
 - b. Only change IP addresses:
 - i. Click the name of the target IP address group.
 - ii. In the lower part of the displayed page, choose **IP Addresses** tab and click **Change IP Address**.
 - iii. Change IP addresses as you needed.
 - iv. Click **OK**.

Deleting an IP Address

If you want to delete IP addresses in batches from an IP address group, see **Changing IP Addresses**.

To delete an IP address from an IP address group, perform the following operations:

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the **IP Address Groups** page, click the name of the target address group.
- 6. In the IP address list, locate the IP address you want to delete and click **Delete** in the **Operation** column.
 - A confirmation dialog box is displayed.
- 7. Confirm the information and click Yes.

10.2.4 Deleting an IP Address Group

Scenarios

If you no longer need an IP address group, you can delete it. This section describes how you can delete an IP address group.

Constraints

An IP address group that has been used for controlling access to a listener cannot be deleted. You can view the listeners associated with an IP address group by referring to **Viewing the Details of an IP Address Group**. For details about how to disassociate an IP address group from a listener, see **Configuring Access Control**.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **Elastic Load Balance** > **IP Address Groups**.
- 5. On the **IP Address Groups** page, locate the IP address group, and click **Delete** in the **Operation** column.
- 6. Click Yes.

1 1 TLS Security Policy

Scenarios

When you add HTTPS listeners, you can select appropriate security policies to improve security. A security policy is a combination of TLS protocols of different versions and supported cipher suites.

- Dedicated load balancers: You can select the default security policy or create a custom policy. For details, see Creating a Custom Security Policy.
- Shared load balancers: You can select the default security policy.

Adding a Security Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Under Listeners, click Add Listener.
- 6. In the Add Listener dialog box, set Frontend Protocol to HTTPS.
- 7. Expand **Advanced Settings** and select a security policy.

Table 11-1 shows the default security policies. Select a default security policy or create a custom security policy by referring to **Creating a Custom Security Policy**.

Table 11-1 Default security policies

Security Policy	Descript ion	TLS Versions	Cipher Suites
TLS-1-0	TLS 1.0, TLS 1.1, and TLS 1.2 and support ed cipher suites (high compati bility and moderat e security) TLS 1.1 and TLS 1.2 and support ed cipher suites (modera te compati bility and moderat e security)	TLS 1.2 TLS 1.1 TLS 1.0	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES256-GCM-SHA256 ECDHE-ECDSA-AES128-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 AES128-GCM-SHA384 ECDHE-ECDSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 AES128-SHA256 AES256-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES128-SHA ECDHE-RSA-AES128-SHA ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA AES128-SHA AES128-SHA AES256-SHA
TLS-1-2	TLS 1.2 and support ed cipher suites (modera te compati bility and high security)	TLS 1.2	

Security Policy	Descript ion	TLS Versions	Cipher Suites
TLS-1-0- Inherit	TLS 1.0, TLS 1.1,	TLS 1.2 TLS 1.1	• ECDHE-RSA-AES256-GCM- SHA384
	and TLS 1.2 and support	TLS 1.0	ECDHE-RSA-AES128-GCM- SHA256
	ed cipher		ECDHE-ECDSA-AES256-GCM- SHA384
	suites (high		ECDHE-ECDSA-AES128-GCM- SHA256
	compati		• AES128-GCM-SHA256
	bility and		• AES256-GCM-SHA384
	moderat		ECDHE-ECDSA-AES128-SHA256
	e security)		ECDHE-RSA-AES128-SHA256
	security)		• AES128-SHA256
			• AES256-SHA256
			ECDHE-ECDSA-AES256-SHA384
			ECDHE-RSA-AES256-SHA384
			ECDHE-ECDSA-AES128-SHA
			ECDHE-RSA-AES128-SHA
			DHE-RSA-AES128-SHA
			ECDHE-RSA-AES256-SHA
			ECDHE-ECDSA-AES256-SHA
			AES128-SHA
			AES256-SHA
			DHE-DSS-AES128-SHA
			• CAMELLIA128-SHA
			EDH-RSA-DES-CBC3-SHA The second sec
			DES-CBC3-SHA TODAY DOLLARS
			ECDHE-RSA-RC4-SHA RS4-SHA
			RC4-SHA RUE BSA AESSES SUA
			DHE-RSA-AES256-SHA DUE-RSSA-AES256-SHA
			DHE-DSS-AES256-SHA DHE-DSA-GAMELLIANS GUA
			DHE-RSA-CAMELLIA256-SHA

Security	Descript	TLS	Cipher Suites
Policy	ion	Versions	
TLS-1-2- Strict	Strict TLS 1.2 and support ed cipher suites (low compati bility and ultra- high security)	TLS 1.2	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 AES128-GCM-SHA256 AES256-GCM-SHA384 ECDHE-ECDSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 AES128-SHA256 AES256-SHA256 AES256-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-RSA-AES256-SHA384

Security	Descript	TLS	Cipher Suites
Policy	ion	Versions	
TLS-1-0- WITH-1-3 (for dedicated load balancers)	TLS 1.0 and later, and support ed cipher suites (ultra- high compati bility and low security)	TLS 1.3 TLS 1.2 TLS 1.1 TLS 1.0	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 AES128-GCM-SHA256 AES256-GCM-SHA384 ECDHE-ECDSA-AES128-SHA256 AES128-SHA256 AES128-SHA256 AES128-SHA256 AES256-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES128-SHA ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-RSA-AES256-SHA AES128-SHA ECDHE-ECDSA-AES256-SHA TLS_AES_128_GCM_SHA256 TLS_AES_128_GCM_SHA384 TLS_CHACHA20_POLY1305_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256

Security Policy	Descript ion	TLS Versions	Cipher Suites
TLS-1-2-FS- WITH-1-3 (for dedicated load balancers)	TLS 1.2 and later, and support ed forward secrecy cipher suites (high compati bility and ultra- high security)	TLS 1.3 TLS 1.2	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-RSA-AES256-SHA384 TLS_AES_128_GCM_SHA256 TLS_AES_256_GCM_SHA384 TLS_CHACHA20_POLY1305_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256 TLS_AES_128_CCM_SHA256
TLS-1-2-FS (for dedicated load balancers)	TLS 1.2 and support ed forward secrecy cipher suites (modera te compati bility and ultra- high security)	TLS 1.2	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 ECDHE-RSA-AES256-SHA384 ECDHE-RSA-AES256-SHA384

Security Policy	Descript ion	TLS Versions	Cipher Suites
hybrid- policy-1-0 (dedicated load balancers)	TLS 1.1 and TLS 1.2 and support ed cipher suites (modera te compati bility and moderat e security)	TLS 1.2 TLS 1.1	 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES256-GCM-SHA256 ECDHE-ECDSA-AES128-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 AES128-GCM-SHA384 ECDHE-ECDSA-AES128-SHA256 ECDHE-RSA-AES128-SHA256 AES128-SHA256 AES256-SHA256 AES256-SHA256 ECDHE-ECDSA-AES256-SHA384 ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES128-SHA ECDHE-RSA-AES128-SHA ECDHE-RSA-AES256-SHA ECDHE-RSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-ECDSA-AES256-SHA ECDHE-SM4-SM3 ECDHE-SM4-SM3
tls-1-2- strict-no-cbc (dedicated load balancers)	TLS 1.2 and support ed cipher suites that exclude CBC encrypti on algorith m (low compati bility and ultra- high security)	TLS 1.2	 ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES128-GCM-SHA256 ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-GCM-SHA256

□ NOTE

- TLS-1-0-WITH-1-3, TLS-1-2-FS-WITH-1-3, TLS-1-2-FS, hybrid-policy-1-0, and tls-1-2-strict-no-cbc are available only for dedicated load balancers.
- The latest TLS version supported by dedicated load balancers is TLS 1.3, while the latest version supported by shared load balancers is TLS 1.2.
- This table lists the cipher suites supported by ELB. Generally, clients also support
 multiple cipher suites. In actual use, the intersection of the cipher suites supported
 by ELB and those supported by clients is used, and the cipher suites supported by
 ELB take precedence.

8. Click OK.

Differences Between Security Policies

Table 11-2 Differences between the security policies

Security Policy	TLS- 1-0	TLS- 1-1	TLS- 1-2	TLS- 1-2- Stric t	TLS-1 -0- WITH -1-3	TLS-1- 2-FS- WITH- 1-3	TLS-1- 2-FS
TLS versions							
TLS 1.3	-	-	-	-	√	√	√
TLS 1.2	√	√	√	√	√	√	√
TLS 1.1	√	√	-	-	√	-	-
TLS 1.0	√	-	-	-	√	-	-
Cipher suite							
EDHE-RSA-AES128- GCM-SHA256	√	√	√	√	-	-	-
ECDHE-RSA-AES256- GCM-SHA384	√	√	√	√	√	√	√
ECDHE-RSA-AES128- SHA256	√	√	√	√	√	√	√
ECDHE-RSA-AES256- SHA384	√	√	√	√	√	√	√
AES128-GCM-SHA256	√	√	√	√	√	-	-
AES256-GCM-SHA384	√	√	√	√	√	-	-
AES128-SHA256	√	√	√	√	√	-	-
AES256-SHA256	√	√	√	√	√	-	-

Security Policy	TLS- 1-0	TLS- 1-1	TLS- 1-2	TLS- 1-2- Stric t	TLS-1 -0- WITH -1-3	TLS-1- 2-FS- WITH- 1-3	TLS-1- 2-FS
ECDHE-RSA-AES128- SHA	✓	√	√	-	√	-	-
ECDHE-RSA-AES256- SHA	√	√	√	-	√	-	-
AES128-SHA	√	√	√	-	√	-	-
AES256-SHA	√	√	√	-	√	-	-
ECDHE-ECDSA- AES128-GCM-SHA256	√	√	√	√	√	√	√
ECDHE-ECDSA- AES128-SHA256	√	√	√	√	√	√	√
ECDHE-ECDSA- AES128-SHA	√	√	√	-	√	-	-
ECDHE-ECDSA- AES256-GCM-SHA384	√	√	√	√	√	√	√
ECDHE-ECDSA- AES256-SHA384	√	√	√	√	√	√	√
ECDHE-ECDSA- AES256-SHA	√	√	√	-	√	-	-
ECDHE-RSA-AES128- GCM-SHA256	-	-	-	-	√	√	√
TLS_AES_256_GCM_S HA384	-	-	-	-	√	√	√
TLS_CHACHA20_POLY 1305_SHA256	-	-	-	-	√	√	✓
TLS_AES_128_GCM_S HA256	-	-	-	-	√	√	√
TLS_AES_128_CCM_8_ SHA256	-	-	-	-	√	√	√
TLS_AES_128_CCM_S HA256	-	-	-	-	√	√	√

Creating a Custom Security Policy

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.

- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **TLS Security Policies**.
- 5. On the displayed page, click **Create Custom Security Policy** in the upper right corner.
- 6. Configure the parameters based on Table 11-3.

Table 11-3 Custom security policy parameters

Parameter	Description	Example Value
Name	Specifies the name of the custom security policy.	tls-test
TLS Version	Specifies the TLS version supported by the custom security policy. You can select multiple versions: TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3	-
Cipher Suite	Specifies the cipher suites that match the selected TLS versions.	-
Description	Provides supplementary information about the custom security policy.	-

7. Click **OK**.

Modifying a Custom Security Policy

You can modify a custom security policy as you need.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **TLS Security Policies**.
- 5. On the **TLS Security Policies** page, click **Custom Security Policies**, locate the custom security policy, and click **Modify** in the **Operation** column.
- 6. In displayed dialog box, modify the custom security policy as described in **Table 11-3**.
- 7. Click **OK**.

Deleting a Custom Security Policy

You can delete a custom security policy as you need.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. In the navigation pane on the left, choose **TLS Security Policies**.
- 5. On the **TLS Security Policies** page, click **Custom Security Policies**, locate the custom security policy, and click **Delete** in the **Operation** column.
- 6. Click Yes.

Changing a Security Policy

When you change a security policy, ensure that the security group containing backend servers allows traffic from 100.125.0.0/16 to backend servers and allows ICMP packets for UDP health checks. Otherwise, backend servers will be considered unhealthy, and routing will be affected.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. On the **Summary** tab page, click **Edit** on the top right.
- 7. In the **Modify Listener** dialog box, expand **Advanced Settings** and change the security policy.
- 8. Click **OK**.

12 Tag

Scenarios

If you have a large number of cloud resources, you can add different tags to the resources to quickly identify them and use these tags to easily manage your resources.

Adding a Tag to a Load Balancer

You can add a tag to a load balancer in the following method:

- Add a tag when you create a load balancer.
- Add a tag to an existing load balancer.
 - a. Log in to the management console.
 - b. In the upper left corner of the page, click and select the desired region and project.
 - c. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
 - d. Locate the load balancer and click its name.
 - e. Under Tags, click Add Tag.
 - f. In the Add Tag dialog box, enter a tag key and value and click OK.

- A maximum of 10 tags can be added to a load balancer.
- Each tag is a key-value pair, and the tag key is unique.

Adding a Tag to a Listener

To add a tag to an existing listener, perform the following steps:

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.

- 3. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
- 4. Locate the load balancer and click its name.
- 5. Click **Listeners**, locate the listener, and click its name.
- 6. Under Tags, click Add Tag.
- 7. In the **Add Tag** dialog box, enter a tag key and value and click **OK**.

□ NOTE

- A maximum of 10 tags can be added to a listener.
- Each tag is a key-value pair, and the tag key is unique.

Modifying a Tag

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Tags**, select the tag to be edited, and click **Edit** in the **Operation** column. In the **Edit Tag** dialog box, change the tag value.

The tag key cannot be changed.

6. Click **OK**.

The operations for modifying a listener tag are not detailed here. Refer to the operations of modifying a load balancer tag.

Deleting a Tag

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Locate the load balancer and click its name.
- 5. Click **Tags**, select the tag to be deleted, and click **Delete** in the **Operation** column.
- 6. In the displayed dialog box, click Yes.

The operations for deleting a listener tag are not detailed here. Refer to the operations of deleting a load balancer tag.

13 Access Logging

Scenarios

ELB logs HTTP and HTTPS requests received by load balancers, including the time when the request was sent, client IP address, request path, and server response. To enable access logging, you need to interconnect ELB with LTS and create a log group and a log stream on the LTS console.

Access logging is supported by HTTP/HTTPS listeners of both dedicated and shared load balancers.

□ NOTE

ELB displays operations data, such as access logs, on the LTS console. Do not transmit private or sensitive data through fields in access logs. Encrypt your sensitive data if necessary.

Configuring LTS

To view access logs, you first need to configure LTS by following the instructions in the *Log Tank Service User Guide*.

- 1. Create a log group.
 - a. Log in to the management console.
 - b. In the upper left corner of the page, click of and select the desired region and project.
 - c. Click in the upper left corner and Management & Deployment > Log Tank Service.
 - d. In the navigation pane on the left, choose **Log Management**.
 - e. Click **Create Log Group**. In the displayed dialog box, enter a name for the log group.
 - Set **Log Retention Duration** as required.
 - f. Click **OK**.
- 2. Create a log stream.

- a. On the LTS console, click on the left of a log group name.
- b. Click **Create Log Stream**. In the displayed dialog box, enter a name for the log stream.
- c. Click OK.

Configuring Access Logging

Configure access logging on the ELB console.

- 1. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 2. Locate the load balancer and click its name.
- Under Access Logs, click Configure Access Logging.
- 4. Enable access logging and select the log group and log stream you created.
- 5. Click OK.

Viewing Access Logs

After you enable access logging, you can obtain details about the requests sent to your load balancer.

There are two ways for you to view access logs.

- On the ELB console, click the name of the load balancer and click **Access Logs** to view logs.
- (Recommended) On the LTS console, click the name of the corresponding log topic. On the displayed page, click **Real-Time Logs**

The following is an example log. For details about the fields in the log, see **Table 13-1**. The log format cannot be modified.

\$msec \$access_log_topic_id [\$time_iso8601] \$log_ver \$remote_addr:\$remote_port \$status
"\$request_method \$scheme://\$host\$router_request_uri \$server_protocol" \$request_length \$bytes_sent
\$body_bytes_sent \$request_time "\$upstream_status" "\$upstream_connect_time" "\$upstream_header_time"
"\$upstream_response_time" "\$upstream_addr" "\$http_user_agent" "\$http_referer" "\$http_x_forwarded_for"
\$lb_name \$listener_name \$listener_id
\$pool_name "\$member_name" \$tenant_id \$eip_address:\$eip_port "\$upstream_addr_priv" \$certificate_id
\$ssl_protocol \$ssl_cipher \$sni_domain_name \$tcpinfo_rtt \$self_defined_header

Table 13-1 Parameter description

Parameter	Description	Description	Example Value
msec	Time in seconds with a millisecond resolution	Floating-point data	1530153091.868
access_log_top ic_id	Log stream ID	UUID	04465dfa-640f-456 7-8b58-45c9f8bbc2 3f

Parameter	Description	Description	Example Value
time_iso8601	Local time in the ISO 8601 standard format	-	2018-06-28T10:31: 31+08:00
log_ver	Log format version	Fixed value: elb_01	elb_01
remote_addr: remote_port	IP address and port number of the client	Records the IP address and port of the client.	10.184.30.170:5960 5
status	HTTP status code	Records the request status code.	200
request_metho d scheme:// host request_uri server_protoco l	Request method Protocol.//Host name: Request URI Request protocol	 request_meth od: request method scheme: HTTP or HTTPS host: host name, which can be a domain name or an IP address request_uri: indicates the native URI initiated by the browser without any modification does not include the protocol and host rame. 	POST https://setting1.hicloud.com/AccountServer/IUserInfoMng/stAuth?Version=26400&cVersion=ID_SDK_2.6.4.300
request_length	Length of the request received from the client, including the header and body	Integer	295
bytes_sent	Number of bytes sent to the client	Integer	58470080
body_bytes_se nt	Number of bytes sent to the client (excluding the response header)	Integer	58469792

Parameter	Description	Description	Example Value
request_time	Request processing time in seconds from the time when the load balancer receives the first request packet from the client to the time when the load balancer sends the response packet	Floating-point data	499.769
upstream_stat us	Response status code returned by the backend server • When the load balancer attempts to retry a request, there will be multiple response status codes. • If the request is not correctly routed to the backend server, a hyphen (-) is displayed as a null value for this field.	HTTP status code returned by the backend server to the load balancer	200 or "-, 200", or "502, 502: 200", or "502:"

Parameter	Description	Description	Example Value
upstream_con nect_time	Time taken to establish a connection with the backend server, in seconds, with a millisecond resolution • When the load balancer attempts to retry a request, there will be multiple connection times. • If the request is not correctly routed to the backend server, a hyphen (-) is displayed as a null value for this field.	Floating-point data	0.008, "-, 0.008", "0.008, 0.005: 0.004", or "0.008:"
upstream_hea der_time	Time taken to receive the response header from the backend server, in seconds, with a millisecond resolution • When the load balancer attempts to retry a request, there will be multiple response times. • If the request is not correctly routed to the backend server, a hyphen (-) is displayed as a null value for this field.	Floating-point data	0.008, "-, 0.008", "0.008, 0.005: 0.004", or "0.008:"

Parameter	Description	Description	Example Value
upstream_resp onse_time	Time taken to receive the response from the backend server, in seconds, with a millisecond resolution • When the load balancer attempts to retry a request, there will be multiple response times. • If the request is not correctly routed to the backend server, a hyphen (-) is displayed as a null value for this field.	Floating-point data	0.008, "-, 0.008", "0.008, 0.005: 0.004", or "0.008:"
upstream_addr	IP address and port number of the backend server. There may be multiple values separated by commas and spaces, and each value is in the format of {IP address}:{Port number} or This parameter is only available for dedicated load balancers.	IP address and port number	-, or 192.168.1.2:8080
http_user_age nt	http_user_agent in the request header received by the load balancer, indicating the system model and browser information of the client	Records the browser-related information.	Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/ 537.36 (KHTML, like Gecko) Chrome/ 67.0.3396.99 Safari/537.36

Parameter	Description	Description	Example Value
http_referer	http_referer in the request header received by the load balancer, indicating the page link of the request	Request for a page link	http:// 10.154.197.90/
http_x_forward ed_for	http_x_forwarded_f or in the request header received by the load balancer, indicating the IP address of the proxy server that the request passes through	IP address	10.154.197.90
lb_name	Load balancer name in the format of loadbalancer_Load balancer ID	String	loadbalancer_7894 24af-3fd2-4292-8c 62-2a2dd7005175
listener_name	Listener name in the format of listener_Listener ID	String	listener_fde03b66- f960-440e-954a-0b e8b2b75093
listener_id	Listener ID (This field can be ignored.)	String	-
pool_name	Backend server group name in the format of pool_backend server group ID	String	pool_066a5dc5- a3e4-4ea1-99f1-2a 5716b681f6
member_name	Backend server name in the format of member_server ID (this field is not supported yet). There may be multiple values separated by commas and spaces, and each value is a member ID (member_id) or	String	member_47b07465 -075a-4d2f-8ce9-0 b9f39bff160 (There may be multiple values separated by commas and spaces, and each value is a member ID (member_id) or)
tenant_id	Tenant ID	String	04dd36f921000fe2 0f95c00bba986340

Parameter	Description	Description	Example Value
eip_address:eip _port	EIP of the load balancer and frontend port that were set when the listener was added	EIP of the load balancer and frontend port that were set when the listener was added	4.17.12.248:443
upstream_addr _priv	IP address and port number of the backend server. There may be multiple values separated by commas and spaces, and each value is in the format of {/P address}:{Port number} or	IP address and port number	-, 192.168.1.2:8080 (There may be multiple values by commas and spaces, and each value is in the format of { <i>IP</i> address}:{ <i>Port</i> number} or)
	This parameter is only available for dedicated load balancers.		
certificate_id	[HTTPS listener] Certificate ID used for establishing an SSL connection This field is not supported yet.	String	17b03b19- b2cc-454e-921b-4d 187cce31dc
ssl_protocol	[HTTPS listener] Protocol used for establishing an SSL connection For a non-HTTPS listener, a hyphen (-) is displayed as a null value for this field.	String	TLS 1.2
ssl_cipher	[HTTPS listener] Cipher suite used for establishing an SSL connection For a non-HTTPS listener, a hyphen (-) is displayed as a null value for this field.	String	ECDHE-RSA- AES256-GCM- SHA384

Parameter	Description	Description	Example Value
sni_domain_na me	[HTTPS listener] SNI domain name provided by the client during SSL handshake	String	www.test.com
	For a non-HTTPS listener, a hyphen (-) is displayed as a null value for this field.		
tcpinfo_rtt	TCP Round Trip Time (RTT) between the load balancer and client in microseconds	Integer	39032
self_defined_h eader	This field is reserved. The default value is	String	-

Example Log

1644819836.370 eb11c5a9-93a7-4c48-80fc-03f61f638595 [2022-02-14T14:23:56+08:00] elb_01 192.168.1.1:888 200 "POST https://www.test.com/example /HTTP/1.1" 1411 251 3 0.011 "200" "0.000" "0.011" "0.011" "100.64.0.129:8080" "okhttp/3.13.1" "-" "-" loadbalancer_295a7eee-9999-46ed-9fad-32a62ff0a687 listener_20679192-8888-4e62-a814-a2f870f62148 333fd44fe3b42cbaa1dc2c641994d90 pool_89547549-6666-446e-9dbc-e3a551034c46 "-" f2bc165ad9b4483a9b17762da851bbbb 121.64.212.1:443 "10.1.1.2:8080" - TLSv1.2 ECDHE-RSA-AES256-GCM-SHA384 www.test.com 56704 -

The following table describes the fields in the log.

Table 13-2 Fields in the log

Field	Example Value
msec	1644819836.370
access_log_topic_id	eb11c5a9-93a7-4c48-80fc-03f61f63 8595
time_iso8601	[2022-02-14T14:23:56+08:00]
log_ver	elb_01
remote_addr: remote_port	192.168.1.1:888
status	200
request_method scheme://host request_uri server_protocol	"POST https://www.test.com/ example/1 HTTP/1.1"
request_length	1411

Field	Example Value
bytes_sent	251
body_bytes_sent	3
request_time	0.011
upstream_status	"200"
upstream_connect_time	"0.000"
upstream_header_time	"0.011"
upstream_response_time	"0.011"
upstream_addr	"100.64.0.129:8080"
http_user_agent	"okhttp/3.13.1"
http_referer	"_"
http_x_forwarded_for	"_"
lb_name	loadbalancer_295a7eee-9999-46ed- 9fad-32a62ff0a687
listener_name	listener_20679192-8888-4e62- a814-a2f870f62148
listener_id	3333fd44fe3b42cbaa1dc2c641994d 90
pool_name	pool_89547549-6666-446e-9dbc- e3a551034c46
member_name	"_"
tenant_id	f2bc165ad9b4483a9b17762da851b bbb
eip_address:eip_port	121.64.212.1:443
upstream_addr_priv	"10.1.1.2:8080"
certificate_id	-
ssl_protocol	TLSv1.2
ssl_cipher	ECDHE-RSA-AES256-GCM-SHA384
sni_domain_name	www.test.com
tcpinfo_rtt	56704
self_defined_header	-

Log analysis:

At 14:23:56 GMT+08:00 on Feb 14, 2022, the load balancer receives an HTTP/1.1 POST request from a client whose IP address and port number are 192.168.1.1 and 888, then routes the request to a backend server whose IP address and port number are 100.64.0.129 and 8080, and finally returns 200 OK to the client after receiving the status code from the backend server.

Analysis results:

The backend server responds to the request normally.

Configuring Log Transfer

If you want to analyze access logs later, transfer the logs to OBS or Data Ingestion Service (DIS) for storage.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Click in the upper left corner and Management & Deployment > Log Tank Service.
- 4. In the navigation pane on the left, choose **Log Transfer**.
- 5. On the **Log Transfer** page, click **Configure Log Transfer** in the upper right corner.
- 1. Configure the parameters. For details, see the *Log Tank Service User Guide*.

14 Monitoring

14.1 Monitoring Metrics

Overview

This section describes the namespace, the metrics that can be monitored by Cloud Eye, and dimensions of these metrics. You can view the metrics reported by ELB and the generated alarms on the Cloud Eye console. For details, see **Viewing Metrics**.

Namespace

SYS.ELB

Metrics

Table 14-1 Metrics supported by ELB

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
m1_cps	Concur rent Connec tions	Load balancing at Layer 4: total number of TCP and UDP connections from the monitored object to backend servers Load balancing at Layer 7: total number of TCP connections from the clients to the monitored object Unit: N/A	≥ 0	 Dedicated load balancer Shared load balancer Dedicated load balancer - listener Shared load 	1 minu te
m2_act_c onn	Active Connec tions	Number of TCP and UDP connections in the ESTABLISHED state between the monitored object and backend servers You can run the following command to view the connections (both Windows and Linux servers): netstat -an Unit: N/A	≥ 0	balancer - listener	

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
m3_inact _conn	Inactiv e Connec tions	Number of TCP connections between the monitored object and backend servers except those in the ESTABLISHED state You can run the following command to view the connections (both Windows and Linux servers): netstat -an Unit: N/A	≥ 0		
m4_ncps	New Connec tions	Number of connections established between clients and the monitored object per second Unit: Count/s	≥ 0/ second		
m5_in_pp s	Incomi ng Packet s	Number of packets received by the monitored object per second Unit: Packet/s	≥ 0/ second		
m6_out_p ps	Outgoi ng Packet s	Number of packets sent from the monitored object per second Unit: Packet/s	≥ 0/ second		
m7_in_Bp s	Inboun d Rate	Traffic used for accessing the monitored object from the Internet per second Unit: byte/s	≥ 0 bytes/s		

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
m8_out_B ps	Outbo und Rate	Traffic used by the monitored object to access the Internet per second Unit: byte/s	≥ 0 bytes/s		
m9_abno rmal_serv ers	Unheal thy Servers	Number of unhealthy backend servers associated with the monitored object Unit: N/A	≥ 0	Dedicated load balancerShared load	1 minu te
ma_norm al_servers	Health y Servers	Number of healthy backend servers associated with the monitored object Unit: N/A	≥ 0	balancer	
m1e_serv er_rps	Reset Packet s from Backen d Servers	(TCP listener metrics) Number of reset packets forwarded by the monitored object from backend servers to clients Unit: Packet/s	≥ 0/ second	 Shared load balancer Shared load balancer - listener 	1 minu te
m21_clie nt_rps	Reset Packet s from Clients	(TCP listener metrics) Number of reset packets forwarded by the monitored object from clients to backend servers Unit: Packet/s	≥ 0/ second		
m1f_lvs_r ps	Reset Packet s from Load Balanc ers	(TCP listener metrics) Number of reset packets generated by the monitored object per second Unit: Packet/s	≥ 0/ second		

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)	
m22_in_b andwidth	Inboun d Bandwi dth	Bandwidth used for accessing the monitored object from the Internet Unit: bit/s	≥ 0 bit/s	Shared load balancerShared load	1 minu te	
m23_out_ bandwidt h	Outbo und Bandwi dth	Bandwidth used by the monitored object to access the Internet Unit: bit/s	≥ 0 bit/s	balancer - listener		
mb_l7_qp s	Layer-7 Query Rate	Number of requests the monitored object receives per second Unit: Query/s	≥ 0 query/s	 Dedicated load balancer Shared load balancer Dedicated load balancer - listener Shared load balancer - listener 	1 minu te	
md_l7_ht tp_3xx	Layer-7 3xx Status Codes	Number of 3xx status codes returned by the monitored object Unit: Count/s	≥ 0/ second	 Dedicated load balancer Shared load balancer Dedicated load balancer - listener Shared load balancer - listener 	1 minu te	

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
mc_l7_htt p_2xx	Layer-7 2xx Status Codes	Number of 2xx status codes returned by the monitored object Unit: Count/s	≥ 0/ second	Dedicated load balancerShared	1 minu te
me_l7_htt p_4xx	Layer-7 4xx Status Codes	Number of 4xx status codes returned by the monitored object Unit: Count/s	s returned by the tored object Count/s ber of 5xx status s returned by the tored object S returned by the tored object Count/s Second Share load balar	 balancer Dedicated load balancer - listener Shared 	
mf_l7_htt p_5xx	Layer-7 5xx Status Codes	Number of 5xx status codes returned by the monitored object Unit: Count/s			
m10_l7_h ttp_other _status	Layer-7 Other Status Codes	codes returned by the secon monitored object	≥ 0/ second		
m11_l7_h ttp_404	Layer-7 404 Not Found	Number of 404 Not Found status codes returned by the monitored object Unit: Count/s	satus codes second by the ed object		
m12_l7_h ttp_499	Layer-7 499 Client Closed Reques t	Number of 499 Client Closed Request status codes returned by the monitored object Unit: Count/s	≥ 0/ second		
m13_l7_h ttp_502	Layer-7 502 Bad Gatew ay	Number of 502 Bad Gateway status codes returned by the monitored object Unit: Count/s	≥ 0/ second		

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
m14_l7_rt	Averag e Layer-7 Respon se Time	Average response time of the monitored object The response time starts when the monitored object receives requests from the clients and ends when it returns all responses to the clients. Unit: ms NOTE The average response time it takes to establish a WebSocket connection may be very high. This metric cannot be used as a reference.	≥ 0 ms		
m15_l7_u pstream_ 4xx	4xx Status Codes Backen d	Number of 4xx status codes returned by the monitored object Unit: Count/s	≥ 0/ second	Dedicated load balancerShared load	1 minu te
m16_l7_u pstream_ 5xx	5xx Status Codes Backen d	Number of 5xx status codes returned by the monitored object Unit: Count/s	≥ 0/ second	 balancer Dedicated load balancer - listener Shared load balancer - listener 	

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
m17_l7_u pstream_ rt	Averag e Server Respon se Time	Average response time of backend servers The response time starts when the monitored object routes the requests to the backend server and ends when the monitored object receives a response from the backend server. Unit: ms NOTE The average response time it takes to establish a WebSocket connection may be very high. This metric cannot be used as a reference.	≥ 0 ms		
l7_con_us age	Layer-7 Concur rent Connec tion Usage	Ratio of HTTP and HTTPS connections established between the monitored object and backend servers per second, to the maximum number of concurrent connections allowed per second Unit: percent (%)	≥ 0%	Dedicated load balancer	1 minu te

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
l7_in_bps _usage	Layer-7 Inboun d Bandwi dth Usage	Ratio of the bandwidth that the monitored object uses to return response to clients over HTTP and HTTPS, to the maximum outbound bandwidth allowed Unit: percent (%) CAUTION If the inbound bandwidth usage reaches	≥ 0%		
		100%, the load balancer performance has reached the upper limit. If the inbound bandwidth keeps higher than the bandwidth that the load balancer can provide, the service availability cannot be guaranteed.			
l7_out_bp s_usage	Layer-7 Outbo und Bandwi dth Usage	Ratio of the bandwidth that the monitored object uses to return response to clients over HTTP and HTTPS, to the maximum outbound bandwidth allowed	≥ 0%		
		Unit: percent (%) CAUTION If the outbound bandwidth usage reaches 100%, the load balancer performance has reached the upper limit. If the outbound bandwidth keeps higher than the bandwidth that the load balancer can provide, the service availability cannot be guaranteed.			

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
l7_ncps_u sage	Layer-7 New Connec tion Usage	Ratio of HTTP and HTTPS connections established between clients and the monitored object per second, to the maximum number of new connections allowed per second Unit: percent (%)	≥ 0%		
l7_qps_us age	Layer 7 QPS Usage	Ratio of HTTP and HTTPS queries per second on the monitored object, to the maximum number of queries allowed per second Unit: percent (%)	≥ 0%		
l4_con_us age	Layer-4 Concur rent Connec tion Usage	Ratio of TCP and UDP connections established between the monitored object and backend servers per second, to the maximum number of concurrent connections allowed per second Unit: percent (%)	≥ 0%	Dedicated load balancer	1 minu te

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
l4_in_bps _usage	Layer-4 Inboun d Bandwi dth Usage	Ratio of the bandwidth that the monitored object uses to receive requests from clients over TCP and UDP, to the maximum inbound bandwidth allowed Unit: percent (%) CAUTION If the inbound bandwidth usage reaches 100%, the load balancer performance has reached the upper limit. If the inbound bandwidth keeps higher than the bandwidth that the load balancer can provide, the service availability cannot be guaranteed.	≥ 0%		
l4_out_bp s_usage	Layer-4 Outbo und Bandwi dth Usage	Ratio of the bandwidth that the monitored object uses to return response to clients over TCP and UDP, to the maximum outbound bandwidth allowed Unit: percent (%) CAUTION If the outbound bandwidth usage reaches 100%, the load balancer performance has reached the upper limit. If the outbound bandwidth keeps higher than the bandwidth that the load balancer can provide, the service availability cannot be guaranteed.	≥ 0%		

Metric ID	Name	Description	Value	Monitored Object	Moni torin g Perio d (Raw Data)
l4_ncps_u sage	Layer-4 New Connec tion Usage	Ratio of TCP and UDP connections established between clients and the monitored object per second, to the maximum number of new connections allowed per second Unit: percent (%)	≥ 0%		

Dimensions

Key	Value
lbaas_instance_id	ID of a dedicated load balancerID of a shared load balancer
lbaas_listener_id	 ID of a listener added to a dedicated load balancer ID of a listener added to a shared load balancer
lbaas_pool_id	ID of the backend server group

14.2 Setting an Alarm Rule

You can add, modify, and delete alarm rules. For details, see the Cloud Eye User Guide.

14.2.1 Creating an Alarm Rule

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click and select the desired region and project.
- 3. Click in the upper left corner and choose Management & Deployment > Cloud Eye.
- 4. In the navigation pane on the left, choose **Alarm Management** > **Alarm Rules**.

5. On the displayed **Alarm Rules** page, click **Create Alarm Rule**.

The following describes how to create an alarm rule for a load balancer.

- a. Resource Type: Select Elastic Load Balance.
- For Dimension, select Elastic Load Balancers or Listeners or Elastic Load Balancers - Listeners or Elastic Load Balancers - Backend Server Group or Backend Server Group. In the following operations, a load balancer is used as an example.
- c. Configure other parameters as required and then click **Create**.

Once the alarm rule is created and the notification function has been enabled, the system automatically sends you a notification when an alarm is generated.

□ NOTE

For more information about alarm rules of load balancers and listeners, see the *Cloud Eye User Guide*.

14.2.2 Modifying an Alarm Rule

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- 3. Click in the upper left corner and choose Management & Deployment > Cloud Eye.
- 4. In the navigation pane on the left, choose **Alarm Management > Alarm Rules**.
- On the Alarm Rules page, locate the alarm rule and choose More > Modify.
 - a. On the **Modify Alarm Rule** page, modify the parameters.
 - Set other parameters as required and then click Modify.
 Once the alarm rule is set and you have enabled the notification function, the system automatically sends you a notification when an alarm is generated.

 INCL	

For more information about alarm rules of load balancers and listeners, see the *Cloud Eye User Guide*.

14.3 Viewing Metrics

Scenarios

Cloud Eye provided by the public cloud cloud service platform monitors the running statuses of load balancers.

You can view the metrics of each load balancer on the Cloud Eye console.

The transmission of monitoring data takes a while, so the status of each load balancer displayed on the Cloud Eye dashboard is not its real-time status. For a

newly created load balancer or a newly added listener, you need to wait for about 5 minutes to 10 minutes before you can view its metrics.

Prerequisites

The load balancer is running properly.
 If backend servers are stopped, faulty, or deleted, no monitoring data is displayed.

□ NOTE

Cloud Eye stops monitoring a load balancer and removes it from the monitored object list if its backend servers have been deleted or are in stopped or faulty state for over 24 hours. However, the configured alarm rules will not be automatically deleted.

 You have interconnected ELB with Cloud Eye and configured an alarm rule for the load balancer on the Cloud Eye console.

Without alarm rules, there is no monitoring data. For details, see **Setting an Alarm Rule**.

 If an IAM user wants to view the ELB monitoring data on the Cloud Eye console, the IAM user must be granted the ELB Administrator permission. Otherwise, the IAM user cannot view all monitoring data.

Viewing Monitoring Metrics on the Cloud Eye Console

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click and select the desired region and project.
- 3. Click in the upper left corner and choose Management & Deployment > Cloud Eye.
- 4. In the navigation pane on the left, choose **Cloud Service Monitoring** > **Elastic Load Balance**.
- 5. On the **Cloud Service Monitoring** page, click the name of the load balancer. Alternatively, locate the load balancer and click **View Metric** in the **Operation** column.
- 6. Select the time period during which you want to view metrics. You can select a system-defined time period (for example, last 1 hour) or specify a time period.
- 7. Click **Select Metric** in the upper right corner and select the metrics to be viewed.

For more details, see the Cloud Eye User Guide.

15 Auditing

15.1 Key Operations Recorded by CTS

You can use CTS to record operations on ELB for query, auditing, and backtracking. **Table 15-1** lists the operations recorded by CTS.

Table 15-1 ELB operations recorded by CTS

Action	Resource Type	Trace
Creating a certificate	certificate	createCertificate
Modifying a certificate	certificate	updateCertificate
Deleting a certificate	certificate	deleteCertificate
Creating a health check	healthmonitor	createHealthMonitor
Modifying a health check	healthmonitor	updateHealthMonitor
Deleting a health check	healthmonitor	deleteHealthMonitor
Adding a forwarding policy	l7policy	createL7policy
Modifying a forwarding policy	l7policy	updateL7policy
Deleting a forwarding policy	l7policy	deleteL7policy
Adding a forwarding rule	l7rule	createl7rule
Modifying a forwarding rule	l7rule	updateL7rule

Action	Resource Type	Trace
Deleting a forwarding rule	l7rule	deleteL7rule
Adding a listener	listener	createListener
Modifying a listener	listener	updateListener
Deleting a listener	listener	deleteListener
Creating a load balancer	loadbalancer	createLoadbalancer
Modifying a load balancer	loadbalancer	updateLoadbalancer
Deleting a load balancer	loadbalancer	deleteLoadbalancer
Adding a backend server	member	createMember
Modifying a backend server	member	updateMember
Removing a backend server	member	batchUpdateMember
Creating a backend server group	pool	createPool
Modifying a backend server group	pool	updatPool
Deleting a backend server group	pool	deletePool

15.2 Viewing Traces

Scenarios

CTS records the operations performed on ELB and allows you to view the operation records of the last seven days on the CTS console. To query these records, perform the following operations.

Procedure

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Under Management & Deployment, click Cloud Trace Service.

- 4. In the navigation pane on the left, choose **Trace List**.
- 5. Specify the filters used for querying traces. The following filters are available:
 - Trace Type, Trace Source, Resource Type, and Search By
 Select a filter from the drop-down list.
 If you select Resource ID for Search By, select or enter a specific resource
 - Operator: Select a specific operator (at the user level rather than the tenant level).
 - Trace Status: Available options include All trace statuses, Normal,
 Warning, and Incident. You can only select one of them.
 - Time range: You can query traces generated at any time range of the last seven days.
- 6. Click $\stackrel{\vee}{}$ on the left of the required trace to expand its details.

Figure 15-1 Expanding trace details

7. Click View Trace in the Operation column to view trace details.

Figure 15-2 View Trace

```
'time': '2018/02/07 11:21:27 GMT+08:00',
'service_type': 'CTS',
'resource_type': 'tracker',
'api_version': '1.0',
'user': {
  'domain': {
     'xdomain_type': .
     'name'; ' .
    'id': '6e62b8f154d84571842bc570f9d4c531',
     'xdomain_id': '4294967295'
  'name': 'cts_admin',
  'id': '26f0b0841c164cf0a18cb1b35cd20e74'
'trace_type': 'ConsoleAction',
'source_ip': '
'trace_name': 'updateTracker',
'request': {
  'bucket_name': 'obs-696a',
  'file_prefix_name': '67'
'response': {
  'bucket_name': 'obs-696a',
  'file prefix name': '67'.
  'status': 'enabled',
```

For details about key fields in the trace, see the *Cloud Trace Service User Guide*.

Example Traces

Creating a load balancer

```
request {"loadbalancer":{"name":"elb-test-
zcy","description":"","tenant_id":"05041fffa40025702f6dc009cc6f8f33","vip_subnet_id":"ed04fd93-
e74b-4794-b63e-e72baa02a2da","admin_state_up":true}}
source_ip 124.71.93.36
trace_type ConsoleAction
event_type system
project_id 05041fffa40025702f6dc009cc6f8f33
trace_id b39b21a1-8d49-11ec-b548-2be046112888
trace_name createLoadbalancer
resource_type loadbalancer
trace rating normal
api_version v2.0
service_type ELB
response {"loadbalancer": {"description": "", "provisioning_status": "ACTIVE", "provider": "vlb",
"project_id": "05041fffa40025702f6dc009cc6f8f33", "vip_address": "172.18.0.205", "pools": [],
"operating_status": "ONLINE", "name": "elb-test-zcy", "created_at": "2022-02-14T03:53:39", "listeners": [], "id": "7ebe23cd-1d46-4a49-b707-1441c7f0d0d1", "vip_port_id": "5b36ff96-3773-4736-83cf-38c54abedeea", "updated_at": "2022-02-14T03:53:41", "tags": [],
"admin_state_up": true, "vip_subnet_id": "ed04fd93-e74b-4794-b63e-e72baa02a2da", "tenant_id":
"05041fffa40025702f6dc009cc6f8f33"}}
resource_id 7ebe23cd-1d46-4a49-b707-1441c7f0d0d1
tracker_name system
time 2022/02/14 11:53:42 GMT+08:00
resource_name elb-test-zcy
record time 2022/02/14 11:53:42 GMT+08:00
request id
user {"domain": {"name": "CBUInfo", "id": "0503dda87802345ddafed096d70a960"}, "name": "zcy",
"id": "09f106afd2345cdeff5c009c58f5b4a"}
```

Deleting a load balancer

```
request
code 204
source_ip 124.71.93.36
trace_type ConsoleAction
event_type system
project_id 05041fffa40025702f6dc009cc6f8f33
trace_id 4f838bbf-8d4a-11ec-a1fe-1f93fdaf3bec
trace_name deleteLoadbalancer
resource_type loadbalancer
trace_rating normal
api_version v2.0
service_type ELB
response {"loadbalancer": {"listeners": [], "vip_port_id": "5b36ff96-3773-4736-83cf-38c54abedeea",
"tags": [], "tenant_id": "05041fffa40025702f6dc009cc6f8f33", "admin_state_up": true, "id":
"7ebe23cd-1d46-4a49-b707-1441c7f0d0d1", "operating_status": "ONLINE", "description": "", "pools":
[], "vip_subnet_id": "ed04fd93-e74b-4794-b63e-e72baa02a2da", "project_id": "05041fffa40025702f6dc009cc6f8f33", "provisioning_status": "ACTIVE", "name": "elb-test-zcy", "created_at": "2022-02-14T03:53:39", "vip_address": "172.18.0.205", "updated_at":
"2022-02-14T03:53:41", "provider": "vlb"}}
resource_id 7ebe23cd-1d46-4a49-b707-1441c7f0d0d1
tracker name system
time 2022/02/14 11:58:03 GMT+08:00
resource_name elb-test-zcy
record_time 2022/02/14 11:58:03 GMT+08:00
user {"domain": {"name": CBUInfo", "id": "0503dda87802345ddafed096d70a960"}, "name": "zcy", "id":
"09f106afd2345cdeff5c009c58f5b4a"}
```

16 Load Balancer Migration

16.1 Migrating from Classic Load Balancers to Shared Load Balancers

Scenarios

Classic load balancers are no longer provided. It is recommended that you use shared load balancers instead because they provide comprehensive Layer 7 load balancing and better forwarding performance.

Prerequisites

You have the **Tenant Administrator** permission.

Impacts on Traffic Routing

Traffic routing over persistent connections will be interrupted during migration and rollback. For the impact on traffic routing over short connections, see the following table.

Table 16-1 Impact on traffic routing over short connections

Scenario	Durin g Migra tion	Before Finishing Migration	Rollback
Migrating a private network load balancer	Not interr upted	On a client that is on the same subnet as the load balancer, run the arping -b Private IP address of the classic load balancer command to refresh ARP entries to ensure service continuity. If ARP entries are not refreshed, traffic from this client will be interrupted. The interruption duration is the ARP aging period, which ranges from 30s to 300s, depending on parameter settings of the client. NOTE The private IP address of the classic load balancer is bound to the shared load balancer.	If ARP entries are not refreshed, traffic from the client is interrupted. The interruption duration is the ARP aging period, which ranges from 30s to 300s, depending on parameter settings of the client. To refresh ARP entries and shorten the interruption duration to a few seconds, run the arping -b Private IP address of the classic load balancer command on the client.
Migrating a public network load balancer with the EIP changed	Not interr upted	Before you click Finish Migration , ensure that the domain name has been mapped to the new EIP of the newly created shared load balancer. If the new EIP has not been configured, traffic is still routed by the classic load balancer. After you click Finish Migration , traffic routing will be interrupted.	Before you click Roll Back, map the domain name to the EIP of the classic load balancer. If the EIP is not configured, traffic is still routed by the shared load balancer. After you click Finish Migration, traffic routing will be interrupted.

Scenario	Durin g Migra tion	Before Finishing Migration	Rollback
Migrating a public network load balancer without changing the EIP	After the shared load balanc er is create d, traffic will be interr upted for about 5s, during which the EIP is releas ed from the classic public netwo rk load balanc er and bound to the shared load balanc er.	Not interrupted	Not interrupted

Migration Process

The following are migration processes for three scenarios:

• Migrating a private network load balancer

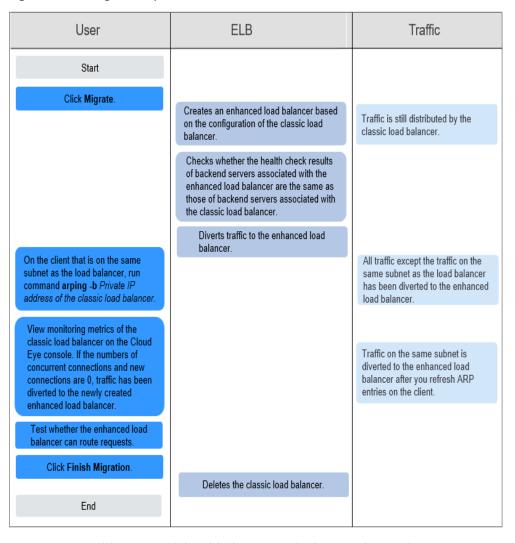


Figure 16-1 Migration process

Migrating a public network load balancer with the EIP changed

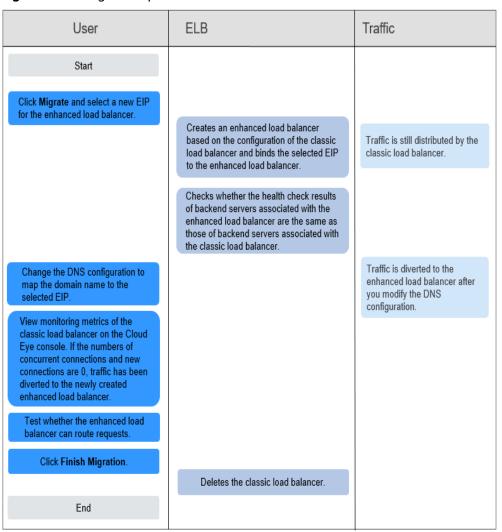


Figure 16-2 Migration process

Migrating a public network load balancer without changing the EIP

ELB User Traffic Start Click Migrate. (Retain the EIP of the classic load balancer.) Creates an enhanced load balancer based on the configuration of the Traffic is still distributed by classic load balancer, but without the classic load balancer. binding an EIP to the enhanced load Checks whether the health check results of backend servers associated with the enhanced load balancer are the same as those of backend servers associated with the classic load balancer. Traffic is interrupted for about Binds the EIP used by the classic 5s. After the migration is load balancer to the enhanced load complete, traffic will be balancer. distributed by the enhanced load balancer. View monitoring metrics of the classic load balancer on the Cloud Eye console. If the numbers of concurrent connections and new connections are 0, traffic has been diverted to the newly created enhanced load balancer. Test whether the enhanced load balancer can route requests. Click Finish Migration. Deletes the classic load balancer. Fnd

Figure 16-3 Migration process

Migrating a Classic Load Balancer

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
- 3. Click Service List. Under Network, click Elastic Load Balance.
- 4. In the classic load balancer list, locate the load balancer you want to migrate and choose **More** > **Migrate**.
- 5. Check whether the load balancer to be migrated is a private network load balancer.
 - If it is a private network load balancer, go to 6.
 - If it is not a private network load balancer, go to 7.
- 6. Run command **arping -b** *Private IP address of the classic load balancer* on the client that is on the same subnet as the load balancer to update the ARP entries. Then, go to **11**.

The private IP address of the classic load balancer is bound to the shared load balancer.

- 7. Determine whether you want to change the EIP.
 - If you want to change the EIP, go to 8.
 - If you do not want to change the EIP, go to 10.
- 8. Modify the DNS configuration to map the domain name to the EIP bound to the shared load balancer.
- 9. Switch to the Cloud Eye console, view monitoring data of the classic load balancer and then go to 11.
 - If both the number of concurrent connections and the number of new connections are 0, traffic is diverted to the shared load balancer.
- 10. Send requests to the shared load balancer to test whether it can route requests to associated backend servers.
- 11. Locate the classic load balancer that has been migrated and choose **More** > **Finish Migration**.

The classic load balancer will be automatically deleted.

12. Switch to the load balancer list and view the newly created shared load balancer.

Rolling Back to a Classic Load Balancer

If you decide to roll back, the newly created shared load balancer will be deleted, and the original classic load balancer will be restored.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Click Service List. Under Network, click Elastic Load Balance.
- 4. In the classic load balancer list, locate the load balancer you want to roll back and choose **More** > **Roll Back**.

Alternatively, select the load balancer you want to roll back and click **Roll Back** above the load balancer list.

Batch Migration or Rollback

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Click Service List. Under Network, click Elastic Load Balance.
- 4. In the classic load balancer list, select the load balancers and click **Migrate** or **Roll Back**.
- 5. Perform subsequent operations as needed.
 - If you choose Migrate, go to 6.
 - If you choose Roll Back, no further operations are required.

- 6. Check whether the load balancers to be migrated are private network load balancers.
 - If they are private network load balancers, go to 7.
 - If they are not private network load balancers, go to 8.
- 7. After the migration, run command **arping -b** *Private IP address of each classic load balancer* on the client that is on the same subnet as the load balancer to update the ARP entries. Then, go to **12**.

◯ NOTE

The private IP address of the classic load balancer will be bound to the shared load balancer.

- 8. Determine whether you want to change the EIP.
 - If you want to change the EIP, go to 9.
 - If you do not want to change the EIP, go to 11.
- 9. Modify the DNS configuration to map the domain name to the EIP bound to each shared load balancer.
- 10. Switch to the Cloud Eye console, view monitoring data of each classic load balancer and then go to 12.
 - If both the number of concurrent connections and the number of new connections are 0, traffic is diverted to the shared load balancers.
- 11. Send requests to shared load balancers to test whether they can route requests to associated backend servers.
- 12. Select all classic load balancers that have been migrated and click **Finish Migration**.

These classic load balancers will be automatically deleted.

13. Switch to the load balancer list, view the newly created shared load balancers.

Causes of Migration Failure

The following are possible causes why a classic load balancer cannot be migrated:

- The quota of the shared load balancer, listener, backend server group, or certificate is insufficient.
- The classic load balancer is not in the **Running** state.
- The classic load balancer listener is not in the **Running** state.

∩ NOTE

- During the migration, the listeners and backend servers of the classic load balancer are also migrated. Your applications and data will not be affected. To ensure successful migration, ensure that backend servers can be accessed from 100.125.0.0/16.
- After the migration, the original classic load balancer will be deleted and cannot be
 restored, and its private IP address and EIP will be used by the newly created shared
 load balancer. If the classic load balancer does not have an EIP, you can bind one to the
 newly created shared load balancer.
- During batch migration of public network load balancers, ensure that the number of EIPs and the number of load balancers are the same. After the migration, the system automatically binds an EIP to each shared load balancer in sequence.
- Integration with the AS service becomes invalid after the migration. Configure AS if you
 want to scale the number of backend servers associated with each shared load balancer.

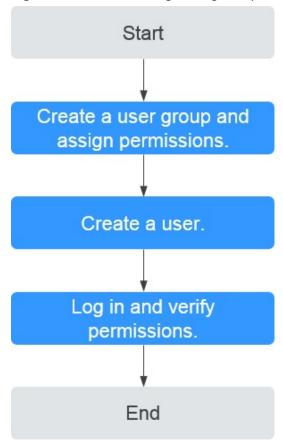
1 Permissions Management

17.1 Creating a User and Granting Permissions

Use IAM to implement fine-grained permissions control over your ELB resources. With IAM, you can:

- Create IAM users for employees based on your enterprise's organizational structure. Each IAM user will have their own security credentials for accessing ELB resources.
- Grant only the permissions required for users to perform a specific task.
- Entrust another account or cloud service to perform efficient O&M on your ELB resources.

Skip this section if your account does not need individual IAM users.


This following describes the procedure for granting permissions.

Prerequisites

You have learned about ELB policies and can select the appropriate policies based on service requirements. Learn about **permissions** supported by ELB. For the permissions of other services, see **Permission Description**.

Process Flow

Figure 17-1 Process for granting ELB permissions

1. Create a user group and assign permissions.

Create a user group on the IAM console and assign the **ELB ReadOnlyAccess** policy to the group.

- 2. Create a user and add it to a user group.
 - Create a user on the IAM console and add the user to the group created in 1.
- 3. Log in and verify permissions.
 - Log in to the ELB console by using the created user, and verify that the user only has read permissions for ELB.
 - Choose Service List > Elastic Load Balance. Then click Create Elastic Load Balancer on the ELB console. If you cannot create a load balancer, the ELB ReadOnlyAccess policy has taken effect.
 - Choose any other service in Service List. If a message appears indicating that you have insufficient permissions to access the service, the ELB ReadOnlyAccess policy has already taken effect.

17.2 Creating a Custom Policy

Custom policies can be created as a supplement to the system policies of ELB. For the actions supported for custom policies, see "Permissions Policies and Supported Actions" in the Elastic Load Balance API Reference.

You can create custom policies in either of the following ways:

- Visual editor: Select cloud services, actions, resources, and request conditions.
 This does not require knowledge of policy syntax.
- JSON: Edit JSON policies from scratch or based on an existing policy.

For details, see **Creating a Custom Policy**. The following section contains examples of common ELB custom policies.

Example Custom Policies

Example 1: Allowing users to update a load balancer

• Example 2: Denying load balancer deletion

A deny policy must be used in conjunction with other policies to take effect. If the permissions assigned to a user contain both Allow and Deny actions, the Deny actions take precedence over the Allow actions.

If you grant the system policy **ELB FullAccess** to a user but do not want the user to have the permission to delete load balancers defined in the policy, you can create a custom policy that rejects the deletion of load balancers and grant the **ELB FullAccess** and deny policies to the user, so that the user can perform all operations on ELB except deleting load balancers. The following is an example deny policy:

• Example 3: Defining permissions for multiple services in a policy

A custom policy can contain the actions of multiple services that are of the global or project-level type. The following is an example policy containing actions of multiple services:

]]

18 Quotas

What Is Quota?

Quotas can limit the number or amount of resources available to users, such as the maximum number of ECSs or EVS disks that can be created.

If the existing resource quota cannot meet your service requirements, you can apply for a higher quota.

How Do I View My Quotas?

- 1. Log in to the management console.
- 2. In the upper right corner of the page, click The **Service Quota** page is displayed.
- View the used and total quota of each type of resources on the displayed page.

If a quota cannot meet service requirements, apply for a higher quota.

How Do I Apply for a Higher Quota?

The system does not support online quota adjustment.

If you need to adjust a quota, contact the operations administrator.

19 FAQ

19.1 Popular Questions

- How Can I Transfer the IP Address of a Client?
- How Does ELB Perform UDP Health Checks? What Are the Precautions for UDP Health Checks?
- What Types of Sticky Sessions Does ELB Support?
- How Is WebSocket Used?
- How Do I Check If Sticky Sessions Failed to Take Effect?
- What Are the Relationships Between Load Balancing Algorithms and Sticky Session Types?
- How Does ELB Distribute Traffic?

19.2 Why Can't I Access My Backend Servers Through a Load Balancer?

Symptom

This FAQ provides guidance for you to troubleshoot the following problems:

- Backend servers cannot be accessed through a load balancer.
- You can access the load balancer from a private IP address, but not from a public IP address.
- Backend servers are considered unhealthy.

Background

Figure 19-1 shows how clients access backend servers through a load balancer.

1. The public network load balancer uses an EIP to receive traffic over the Internet, while the private network load balancer receives traffic from within the VPC.

- 2. The load balancer receives incoming traffic using the frontend protocol and port configured for the listener.
- 3. The listener checks the health of backend servers. Only healthy backend servers can receive traffic from the listener.
- 4. The listener forwards the traffic to backend servers based on their weights and the listening rules.

Generally, the problem is probably caused by an access control issue (the parts in yellow) or a health check setting (the green parts).

Troubleshooting should start with backend servers, then move on to the load balancer, and finally to the clients.

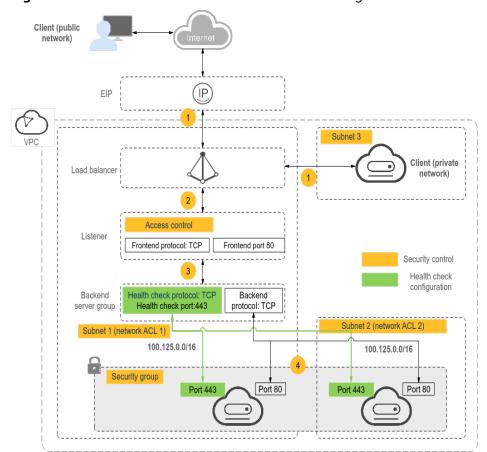
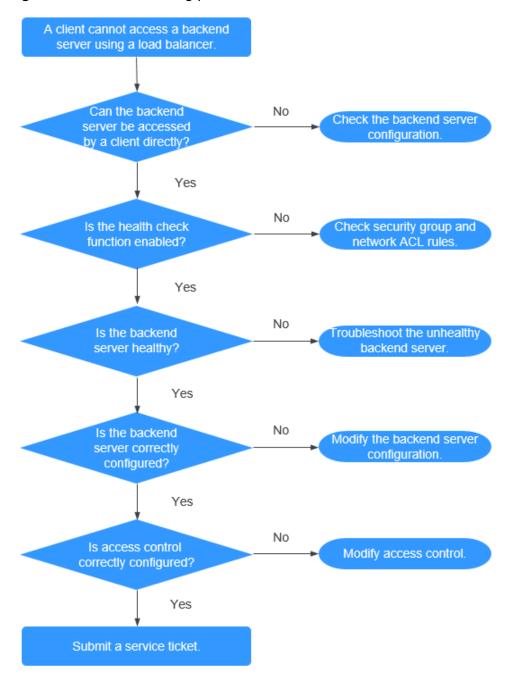



Figure 19-1 How clients access backend servers through a load balancer

Troubleshooting Process

Figure 19-2 Troubleshooting process

- Check whether the backend server can be accessed directly. Use the client to access the backend server and verify that the backend server configuration and application configuration are correct.
- 2. Check whether the health check is enabled on the console.
- 3. Check whether the health check result of the backend server on the console. If the backend server is unhealthy, the load balancer will not route traffic to it.

- 4. Check whether the weight and port of the backend server are correctly configured on the console.
- 5. Check whether access control is enabled and the IP address of the client is allowed to access the listener on the console.

Step 1: Check Whether the Backend Server Can Be Accessed Directly

Use a client to access the backend server to determine whether the fault is caused by the load balancer or backend server. To do so, ensure that the network ACL rules allow communications between the client and backend server.

- Clients on the public network: Bind an EIP to the backend server. After the verification is complete, release the EIP.
- Clients on the private network: No EIP is required. If the client is in another VPC, set up a VPC peering connection.

If the fault persists, go to Step 2: Check Whether the Health Check Is Enabled.

Step 2: Check Whether the Health Check Is Enabled

If the client can access the backend server directly, check whether the health check is enabled. If the health check is enabled but the backend server is detected unhealthy, the load balancer will not route traffic to it.

- 1. Log in to the management console.
- 2. In the upper left corner of the page, click of and select the desired region and project.
- 3. Hover on in the upper left corner to display **Service List** and choose **Network** > **Elastic Load Balance**.
- 4. Click the name of the load balancer.
- 5. On the **Listeners** tab page, check whether the health check is enabled.
 - If the health check is enabled, go to Step 3: Check Whether the Backend Server Is Healthy.
 - If the health check is not enabled:
 - Shared load balancers: Check whether the security group rules of the backend servers and network ACL rules allow traffic from 100.125.0.0/16.
 - Dedicated load balancers: Check whether the backend security group rules allow access from the VPC CIDR block where the ELB backend subnet works.

This CIDR block is used by ELB to access backend servers and has no security risks. If traffic is allowed but the fault persists, go to **Step 4: Check Whether the Backend Server Configuration Is Correct.**

! CAUTION

- Shared load balancers: If Transfer Client IP Address is enabled for a TCP or UDP listener, there is no need to configure security group rules and Network ACL rules to allow traffic from 100.125.0.0/16, 100.126.0.0/16, and client IP addresses to backend servers.
- Dedicated load balancers: If IP as a Backend is not enabled for a load balancer that has a TCP or UDP listener, there is no need to configure security group rules and Network ACL rules to allow traffic from the backend subnet where the load balancer is deployed to the backend servers.

Step 3: Check Whether the Backend Server Is Healthy

If the health check is enabled but the backend server is detected unhealthy, the load balancer will not route traffic to it.

- If the backend server is unhealthy, rectify the fault by referring to How Do I
 Troubleshoot an Unhealthy Backend Server?
- If the backend server is healthy, go to **Step 4: Check Whether the Backend Server Configuration Is Correct**.

If the fault persists, go to **Step 4: Check Whether the Backend Server Configuration Is Correct**.

Step 4: Check Whether the Backend Server Configuration Is Correct

- 1. Choose **Backend Server Groups** > **Backend Servers** to view the backend server parameters:
 - Weight: If the weight is set to 0, traffic will not be forwarded to the server
 - Backend port: It must be the same as the port used by the backend server.
- 2. On the **Listeners** tab page, locate the TCP or UDP listener and check whether **Transfer Client IP Address** is enabled.
 - If this function is enabled, the load balancer uses the IP address of the client to access the backend server. In this case, configure security group and firewallnetwork ACL rules to allow access from this IP address.
 In addition, if this function is enabled, a server cannot be used as both the client and the backend server. This is because the backend server determines that the packet is sent by a local host based on the source IP address and will not return the response packet to the load balancer.
 - If this function is disabled, verify that the security group allows traffic from the corresponding IP address range to the backend server.

If the fault persists, go to **Step 5: Check Whether Access Control Is Enabled**.

Step 5: Check Whether Access Control Is Enabled

On the **Summary** tab page of the listener, check whether access control is enabled and the client is allowed to access the listener.

19.3 What Can I Do If ELB Can't Be Accessed or Traffic Routing is Interrupted?

- 1. Check the health of backend servers. If a backend server is unhealthy, traffic will be routed to other healthy servers. Rectify the health check fault and access ELB again.
- 2. Check whether the security group rules allow access from the corresponding IP address range.
 - Dedicated load balancers: Check whether the security group containing the backend server has inbound rules to allow traffic from the backend subnet where the load balancer is deployed.
 - Shared load balancers: Check whether the security group containing the backend server has inbound rules to allow traffic from the 100.125.0.0/16 and 100.125.0.0/16.

! CAUTION

- Shared load balancers: If Transfer Client IP Address is enabled for a TCP or UDP listener, there is no need to configure security group rules and Network ACL rules to allow traffic from 100.125.0.0/16, 100.126.0.0/16, and client IP addresses to backend servers.
- Dedicated load balancers: If IP as a Backend is not enabled for a load balancer that has a TCP or UDP listener, there is no need to configure security group rules and Network ACL rules to allow traffic from the backend subnet where the load balancer is deployed to the backend servers.
- 3. Check whether a TCP connection is established between the load balancer and the client. The timeout duration for a TCP connection is 300s and cannot be changed. If the duration exceeds 300s, the load balancer sends an RST message to the client and the backend server to disconnect the connection.
- 4. Check whether sticky sessions are enabled and the sticky session type is set to source IP address. If yes, check whether the request IP address changes before the request reaches the load balancer.
 - For example, if ELB is combined with Content Delivery Network (CDN) or Web Application Firewall (WAF), the IP address of the request changes when it passes through CDN or WAF. The IP address change causes session stickiness to fail. If you want to use CDN or WAF, it is recommended that you add an HTTP or HTTPS listener and configure cookie-based sticky sessions.
- 5. Check whether the listener is an HTTP or HTTPS listener and sticky sessions are enabled. If yes, check whether the request contains a cookie. Sticky sessions at Layer 7 are based on cookies. If the request contains a cookie, check whether the cookie value changes.
- 6. Check the stickiness duration configured for the backend server group. If sticky sessions are enabled, the default stickiness duration of the backend server group at Layer 4 and Layer 7 is 20 minutes. After the stickiness duration times out, the connection will be disconnected.

- 7. Check whether the servers you access are associated with a load balancer. If **Transfer Client IP Address** is enabled for TCP or UDP listeners, a cloud server cannot be used as both a backend server and a client.
- 8. Check whether you have added a backend server in a VPC that is different from the one where the load balancer is running, by using the server's IP address. If yes, check whether a VPC peering connection has been established between the two VPCs.

19.4 How Can I Handle Error Codes?

Common error codes include 400, 403, 502, and 504. If any of these codes is returned, it is recommended that you access the backend server to check if it can respond properly.

If the backend server responds properly, rectify the fault by referring to **Table 19-1**.

Table 19-1 Common error codes

Error Code	Description	Possible Causes
400	Bad Request	 The client sent a malformed request that does not comply with the HTTP specification. An HTTP request was sent to the HTTPS port. The size of the request header exceeded 64 KB.
401	Unauthorized	Authentication on the backend server failed. (This error code is returned to the client by the backend server.)
403	Forbidden	The request was intercepted by the backend server. (This error code is returned to the client by the backend server.)
404	Not Found	 The backend server is abnormal or the application does not exist. (This error code is returned to the client by the backend server.) The forwarding policy was incorrectly configured, and the request was not routed to the right backend server.
408	Request Timeout	The client did not send the request within the time that the server was configured to wait, which is 60s by default. Sending a TCP keepalive packet does not prevent this timeout.
413	Payload Too Large	The size of the request body sent by the client exceeded 10 GB.
414	URI Too Long	The request URL or query string parameter sent by the client was too long.

Error Code	Description	Possible Causes
499	Client Closed Request	The client disconnected from the load balancer before receiving a response from the load balancer. This error code is recorded only in access logs.
500	Internal Server Error	There was an internal error. (This error code is returned to the client by the backend server.)
501	Not Implemented	The load balancer failed to identify the request. The value of the Transfer-Encoding header field is not chunked or identity .
502	Bad Gateway	The port used by the backend server was incorrectly configured.
		The load balancer received a TCP RST packet from the backend server when attempting to establish a connection with or sending data to the backend server.
		The format of the response from the backend server was incorrect, or the response contained an invalid HTTP response header.
		The backend server is incorrectly configured, for example, incorrect routes or network ACL.
503	Service Unavailable	The application or backend server was unavailable. Generally, this error code is returned by the backend server.
504	Gateway Timeout	During the first connection, the load balancer fails to connect to the backend server before the connection times out. (The default timeout is 5 seconds).
		The load balancer established a connection with the backend server, but did not respond before the response timeout (which is 300s by default) elapsed.
		The network ACL of the subnet did not allow the load balancer to access backend servers in the subnet.

19.5 Can ELB Be Used Separately?

ELB cannot be used alone.

ELB distributes incoming traffic to multiple backend servers based on the forwarding policy to balance workloads. So, it can expand external service capabilities of your applications and eliminate single points of failure (SPOFs) to improve service availability. To use a load balancer, you must associated backend servers (such as ECSs) with it.

19.6 Does ELB Support Persistent Connections?

Yes.

The connections between the client and load balancer are persistent connections. After a TCP persistent connection is established, the client continuously sends HTTP requests to the load balancer until the connection times out. The reuse of TCP connections reduces the costs for a large number of short connections.

19.7 Does ELB Support FTP on Backend Servers?

ELB does not support File Transfer Protocol (FTP), but supports Secure File Transfer Protocol (SFTP) on backend servers.

19.8 Is an EIP Assigned Exclusively to a Load Balancer?

During the lifecycle of a load balancer, the EIP can be unbound from the load balancer. If the EIP is unbound, the load balancer becomes a private network load balancer, and the EIP can be bound to other resources.

19.9 How Many Load Balancers and Listeners Can I Have?

By default, each account can have up to 50 load balancers and 100 listeners. If you need more load balancers or listeners, apply to increase your quotas.

All load balancers in your account share the same quota for listeners.

19.10 What Types of APIs Does ELB Provide? What Are Permissions of ELB?

ELB supports the following policies:

Table 19-2 ELB policies

Policy Type	Policy Name	Description
RBAC policy	ELB Administrator	Has all permissions on ELB Before assigning the RBAC policy to a user group, check whether the user group has a dependent policy. If yes, set the dependent permission to make the RBAC policy take effect.

Policy Type	Policy Name	Description
Fine-grained policy	ELB FullAccess	Has all permissions on ELB. If this function is not enabled, you cannot assign a fine-grained policy to a user group.
	ELB ReadOnlyAccess	Has the read-only permission on ELB.

Table 19-3 Common operations supported by system-defined policies

Operation	ELB FullAccess	ELB ReadOnlyAccess	ELB Administrator
Creating a load balancer	Supported	Not supported	Supported
Querying a load balancer	Supported	Supported	Supported
Querying a load balancer and associated resources	Supported	Supported	Supported
Querying load balancers	Supported	Supported	Supported
Modifying a load balancer	Supported	Not supported	Supported
Deleting a load balancer	Supported	Not supported	Supported
Adding a listener	Supported	Not supported	Supported
Querying a listener	Supported	Supported	Supported
Modifying a listener	Supported	Not supported	Supported
Deleting a listener	Supported	Not supported	Supported
Adding a backend server group	Supported	Not supported	Supported
Querying a backend server group	Supported	Supported	Supported

Operation	ELB FullAccess	ELB ReadOnlyAccess	ELB Administrator
Modifying a backend server group	Supported	Not supported	Supported
Deleting a backend server group	Supported	Not supported	Supported
Adding a backend server	Supported	Not supported	Supported
Querying a backend server	Supported	Supported	Supported
Modifying a backend server	Supported	Not supported	Supported
Deleting a backend server	Supported	Not supported	Supported
Configuring a health check	Supported	Not supported	Supported
Querying a health check	Supported	Supported	Supported
Modifying a health check	Supported	Not supported	Supported
Disabling a health check	Supported	Not supported	Supported
Assigning an EIP	Not supported	Not supported	Supported
Binding an EIP to a load balancer	Not supported	Not supported	Supported
Querying an EIP	Supported	Supported	Supported
Unbinding an EIP from a load balancer	Not supported	Not supported	Supported
Viewing metrics	Not supported	Not supported	Supported
Viewing access logs	Not supported	Not supported	Supported

For details about fine-grained permissions, see the *Elastic Load Balance API Reference*.

19.11 Can I Adjust the Number of Backend Servers When a Load Balancer is Running?

You can adjust the number of backend servers associated with a load balancer at any time. You can also change the type of backend servers according to your service needs. To ensure service stability, ensure that health checks are normal and that at least one healthy backend server is associated with the load balancer.

19.12 Can Backend Servers Run Different OSs?

Yes.

ELB does not restrict OSs of backend servers as long as applications on these servers are the same and the data is consistent. However, it is recommended that you install the same OS on backend servers to simplify management.

19.13 Can I Configure Different Backend Ports for a Load Balancer?

Yes. You can configure different backend ports for backend servers associated with a load balancer.

19.14 Can ELB Be Used Across Accounts or VPCs?

- Your shared load balancers cannot be used by another account, and you cannot associate backend servers whose VPCs are not the same as the load balancers.
- For dedicated load balancers, you can add servers in a VPC connected using a VPC peering connection, in a VPC in another region and connected through a cloud connection, or in an on-premises data center at the other end of a Direct Connect or VPN connection, by using their IP addresses. For details, see Overview in Elastic Load Balance User Guide.

19.15 Can Backend Servers Access the Ports of a Load Balancer?

No. Backend servers cannot access the ports of the load balancer they are associated with.

19.16 Can Both the Listener and Backend Server Group Use HTTPS?

Dedicated load balancers support this function.

You can select HTTPS as the listener's protocol and the backend server group's protocol. For details about how to add a listener, see section "Adding an HTTPS Listener" in the *Elastic Load Balance User Guide*.

19.17 Can I Change the VPC and Subnet for My Load Balancer?

You cannot change the VPC and subnet for your shared load balancers.

You can change the subnet but not the VPC for your dedicated load balancers.

19.18 Can I Upgrade a Shared Load Balancer to a Dedicated Load Balancer Without Interrupting Traffic Routing?

No. Shared load balancers cannot be upgraded to dedicated load balancers.

19.19 Does ELB Support IPv6 Networks?

Shared load balancers support only IPv4 networks. Dedicated load balancer load balancers support both IPv4 and IPv6 networks.

At Layer 4, when a client communicates with a dedicated load balancer using an IPv6 address, the load balancer must communicate with backend servers using an IPv6 address. At Layer 7, when a client communicates with a dedicated load balancer using an IPv6 address, the load balancer must communicate with backend servers using an IPv4 address.

■ NOTE

- If you do not enable IPv6 for the specified backend subnet when you create a dedicated load balancer, the load balancer cannot use IPv6 addresses to route requests.
- If you need IPv6 networks, you must select a backend subnet with IPv6 enabled for your dedicated load balancer.

Figure 19-3 Network types supported by dedicated load balancers at Layer 4

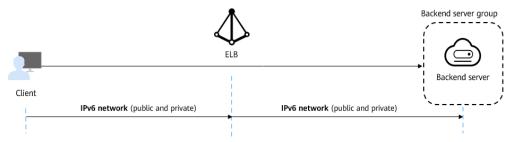
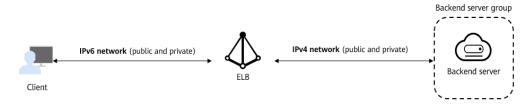



Figure 19-4 Network types supported by dedicated load balancers at Layer 7

19.20 How Do I Check for Traffic Inconsistencies?

Check for failed requests on the clients, especially when 4xx status codes are returned. One possible cause is that the requests are not being routed to backend servers because ELB considers these requests abnormal.

19.21 How Do I Check If Traffic Is Being Evenly Distributed?

- 1. Check whether sticky sessions are enabled. If sticky sessions are enabled and there are few clients, traffic may be unevenly distributed.
- Check the health of backend servers, especially those whose health changes over time. If a backend server is **Unhealthy** or its health switches between **Healthy** and **Unhealthy**, traffic is unbalanced.
- 3. Check whether the **Source IP hash** algorithm is used. If the algorithm is used, requests sent from the same IP address are routed to the same backend server, resulting in unbalanced traffic.
- 4. Check whether applications on the backend server use keepalive to maintain TCP persistent connections. If keepalive is used, traffic may be unbalanced because the number of requests on persistent connections is different.
- 5. Check whether different weights are assigned to backend servers. The traffic varies according to the weights.

◯ NOTE

Generally, in addition to the load balancing algorithm, factors that affect load balancing include connection type, session stickiness, and server weights.

19.22 How Do I Check If There Is Excessive Access Delay?

- 1. Bind an EIP to a backend server to make the applications accessible from the Internet and then check the access delay. In this way, you can determine whether the problem is caused by the client, load balancer, or applications.
- 2. Check the incoming traffic. If the incoming traffic exceeds the EIP bandwidth, there may be congestion and packet loss.

□ NOTE

If the incoming traffic exceeds the available bandwidth, it does not mean that the bandwidth is fully used. In this case, you need perform further operations to locate the fault or increase the bandwidth.

- 3. Check the load and security policies of backend servers. If backend servers are heavily loaded or they have security policies configured, they cannot quickly respond to requests from the associated load balancer.
- 4. Check the **Unhealthy Servers** metric to view the health statuses of backend servers. If the applications are unstable and connections to the backend server time out, the retry mechanism will route the requests to another backend server. As a result, access to the applications will be successful but there will be more access delay.
- 5. If the problem persists, contact customer service.

19.23 What Do I Do If a Load Balancer Fails a Stress Test?

- 1. Check the load of backend servers. If their vCPU usage reaches 100%, applications may have performance bottlenecks.
- 2. Check the incoming traffic. If burst traffic exceeds the bandwidth set for the EIP, a large number of packets will be lost and requests will not be responded to, thereby affecting the load balancer's performance.

If burst traffic exceeds the available bandwidth, it does not mean that the bandwidth is fully used. In this case, you need perform further operations to locate the fault or increase the bandwidth.

- 3. Check the number of short connections in the **time_wait** state on the clients. One possible cause is that there are insufficient client ports.
- 4. The listening queue backlog of the backend servers may be full. If this happens, the backend server will not respond to SYN ACK packets, and the client will time out. You can increase the maximum allowed of the backlog by adjusting the **net.core.somaxconn** parameter.

19.24 Load Balancers

19.24.1 How Does ELB Distribute Traffic?

ELB uses FullNAT to forward the incoming traffic. For load balancing at Layer 4, LVS forwards the incoming traffic to backend servers directly. For load balancing at Layer 7, LVS forwards the incoming traffic to Nginx, which then forwards the traffic to backend servers.

□ NOTE

In FullNAT, LVS translates source IP addresses and destination IP addresses of the clients.

Figure 19-5 Load balancing at Layer 4

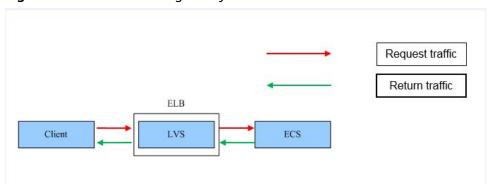
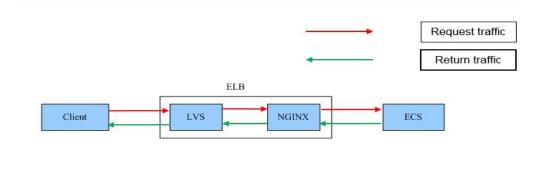



Figure 19-6 Load balancing at Layer 7

19.24.2 How Can I Access a Load Balancer Across VPCs?

VPC Peering can help you achieve this. For example, if another user has created load balancer ELB01 in VPC01, and you are in VPC02 and want to access ELB01, you just need to set up a VPC peering connection between VPC01 and VPC02 and add a route for the connection.

19.24.3 How Can I Configure Load Balancing for Containerized Applications?

You can configure load balancing using either of the following:

- Management console
- kubectl commands

For more details, see Cloud Container Engine User Guide.

19.24.4 Why Can't I Delete My Load Balancer?

• There may be resources associated with the load balancer. Delete these resources first.

Delete the resources configured for the load balancer in the following sequence:

- Delete all the forwarding policies added to HTTP and HTTPS listeners of the load balancer.
- b. Delete the redirect created for each HTTP listener of the load balancer.
- c. Remove all the backend servers from the backend server groups associated with each listener of the load balancer.
- d. Delete all the listeners added to the load balancer.
- e. Delete all backend server groups associated with each listener of the load balancer.

19.24.5 Do I Need to Configure EIP Bandwidth for My Load Balancers?

If you use a load balancer on a private network, you do not need to configure EIP bandwidth. You only need to bind an EIP and configure bandwidth if you are using a load balancer on a public network.

19.24.6 Can I Bind Multiple EIPs to a Load Balancer?

No.

- If you want to use the load balancer on a public network, you can only bind one EIP to the load balancer to receive requests from the Internet.
- If you want to use the load balancer in a VPC, bind a private IP address. To
 route requests from a different VPC, you need to create a VPC peering
 connection between the VPC where the load balancer works and the other
 VPC. For details, see section "Creating a VPC Peering Connection with Another
 VPC in Your Account" in the Virtual Private Cloud User Guide.

19.24.7 Why Multiple IP Addresses Are Required When I Create or Enable a Dedicated Load Balancer?

These IP addresses are used by underlying resources.

Generally, 2 IP addresses are required for creating a load balancer in a single AZ, and 6 IP addresses are required for creating a load balancer with IP as a backend enabled. If you create a load balancer in multiple AZs, more IP addresses will be required. There is an algorithm to determine how many IP addresses are required.

19.24.8 Why Are Requests from the Same IP Address Routed to Different Backend Servers When the Load Balancing Algorithm Is Source IP Hash?

One possible cause is that the backend server receiving requests from the client has become unhealthy. The source IP hash algorithm uses the source IP address of

each request as a hashing key to route traffic from a particular client to the same backend server, as long as it is available. This allows requests from different clients to be routed based on their source IP addresses and ensures that a given client is always directed to the same backend server.

However, if a backend server become unhealthy and then recovers, ELB will generate a new hash key based on the source IP address of the request and numbers the backend server. As a result, requests from the same IP address are routed to different backend servers.

19.24.9 Can Backend Servers Access the Internet Using the EIP of the Load Balancer?

Nο

The load balancer uses the EIP to receive requests from the Internet and routes the requests to backend servers over a private network.

If you want the backend servers to access the Internet or provide Internetaccessible services directly, you can bind an EIP to each backend server. You can also configure a NAT gateway for the backend servers so that they can share an EIP to access the Internet.

19.24.10 Do Shared Load Balancers Have Specifications?

No.

Shared load balancers share underlying resources, and the performance of one load balancer is affected by other load balancers. Only dedicated load balancers have exclusive use of their underlying resources. The performance of a dedicated load balancer is not affected by other dedicated load balancers on the Internet.

19.24.11 Will Traffic Routing Be Interrupted If the Load Balancing Algorithm Is Changed?

No. If the load balancing algorithm is changed, established connections will not be affected. Therefore, traffic routing will not be interrupted.

19.24.12 What Is the Difference Between the Bandwidth Included in Each Specification of a Dedicated Load Balancer and the Bandwidth of an EIP?

The bandwidth included in the specifications of dedicated load balancers is the upper limit of the inbound or the outbound traffic. The bandwidth of the EIP bound to the load balancer is the limit for traffic required by the clients to access the load balancer.

19.24.13 How Do I Combine ELB and WAF?

After you connect your website to Web Application Firewall (WAF), you can configure access control on ELB to allow only traffic from the WAF-back-to-source IP addresses to origin servers. This prevents hackers from obtaining your origin

server IP addresses and then bypassing WAF to attack origin servers. For details, see *Web Application Firewall User Guide*.

19.25 Listeners

19.25.1 What Are the Relationships Between Load Balancing Algorithms and Sticky Session Types?

ELB supports three types of sticky sessions that can send requests from the same client to the same backend server. The following tables list the types of sticky sessions corresponding to each load balancing algorithm.

Table 19-4 Sticky sessions supported by dedicated load balancers

Load Balancing Algorithm	Sticky Session Type	Layer 4 (TCP/ UDP)	Layer 7 (HTTP/ HTTPS)
Weighted round	Source IP address	Supported	Not supported
robin	Load balancer cookie	N/A	Supported
	Application cookie	N/A	Not supported
Weighted least	Source IP address	Supported	Not supported
connections	Load balancer cookie	N/A	Supported
	Application cookie	N/A	Not supported
Source IP hash	Source IP address	N/A	Not supported
	Load balancer cookie	N/A	Not supported
	Application cookie	N/A	Not supported

Table 19-5 Sticky sessions supported by shared load balancers

Load Balancing Algorithm	Sticky Session Type	Layer 4 (TCP/ UDP)	Layer 7 (HTTP/ HTTPS)
Weighted round	Source IP address	Supported	Not supported
robin	Load balancer cookie	N/A	Supported
	Application cookie	N/A	Supported
Weighted least	Source IP address	Supported	Not supported
connections	Load balancer cookie	N/A	Supported
	Application cookie	N/A	Supported
Source IP hash	Source IP address	N/A	Not supported

Load Balancing Algorithm	Sticky Session Type	Layer 4 (TCP/ UDP)	Layer 7 (HTTP/ HTTPS)
	Load balancer cookie	N/A	Not supported
	Application cookie	N/A	Not supported

Generally, the weighted round robin algorithm is recommended. Sticky sessions at Layer 4 use source IP addresses to main sessions, and sticky sessions at Layer 7 use load balancer cookies.

19.25.2 Can I Bind Multiple Certificates to a Listener?

You can configure multiple certificates for an HTTPS listener by enabling SNI so that different certificates can be used for authentication based on the domain names of the requests.

For details, see SNI Certificate.

19.25.3 What HTTP Headers Can I Configure for an HTTP and HTTP Listener?

Table 19-6 describes the HTTP headers supported by HTTP and HTTP Listeners.

Table 19-6 Supported headers

Headers	Description
X-Forwarded- ELB-IP	The EIP bound to the load balancer is transmitted to backend servers through the HTTP header.
X-Forwarded- Host	The Host field in the request from the client is placed in X-Forwarded-Host and sent to backend servers.
X-Forwarded- Port	The protocol used by the listener is transmitted to backend servers through the HTTP header.
X-Forwarded- Proto	The protocol type (HTTP or HTTPS) of the request is transmitted to backend servers through the HTTP header.
X-Forwarded- For	Source IP addresses and proxy IP addresses of the clients are transmitted to backend servers through the HTTP header.
X-Real-IP	Source IP addresses of the clients are transmitted to backend servers through the HTTP header.

19.25.4 Will ELB Stop Distributing Traffic Immediately After a Listener Is Deleted?

- If a TCP or UDP listener is deleted, the load balancer immediately stops routing traffic because the client uses short connections to communicate with the load balancer.
- If an HTTP or HTTPS listener is deleted, persistent connections that have been established between the client and the load balancer will be kept alive until they time out, and therefore request routing is not affected. After the connections time out, the client stops sending requests over these connections. The default timeout duration is 300s.

The duration for which persistent connections are kept alive is called idle timeout, and this takes effect only for persistent connections established between the client and load balancer.

19.25.5 Does ELB Have Restrictions on the File Upload Speed and Size?

- ELB has no restrictions on the file upload speed on the clients. However, the bandwidth may limit the upload speed.
- For HTTP or HTTPS listeners, the maximum file size is 10 GB. However, TCP or UDP listeners have no limit on the file size.

19.25.6 Can Multiple Load Balancers Route Requests to One Backend Server?

Yes. This is supported as long as the load balancers are in the same subnet as the backend server.

19.25.7 How Is WebSocket Used?

For HTTP listeners, unencrypted WebSocket (ws://) is supported by default. For HTTPS listeners, encrypted WebSocket (wss://) is supported by default.

19.25.8 Why Can't I Select the Target Backend Server Group When Adding or Modifying a Listener?

The backend server group's protocol (backend protocol) you want to select is not supported by the listener protocol (frontend protocol). There are some constraints on the backend protocol when you associate a backend server group with a listener.

Table 19-7 Frontend and backend protocols of dedicated load balancers

Frontend Protocol	Backend Protocol
ТСР	ТСР
UDP	UDP/QUIC

Frontend Protocol	Backend Protocol
НТТР	НТТР
HTTPS	HTTP/HTTPS

Table 19-8 Frontend and backend protocols of shared load balancers

Frontend Protocol	Backend Protocol
ТСР	ТСР
UDP	UDP
НТТР	НТТР
HTTPS	НТТР

19.25.9 Why Cannot I Add a Listener to a Dedicated Load Balancer?

If you select either network load balancing (TCP/UDP) or application load balancing (HTTP/HTTPS) when creating the load balancer, you can only add listeners of the matched protocol.

The load balancing type cannot be changed after being selected. For example, if you have selected network load balancing during load balancer creation, you cannot change it to application load balancing and you cannot add HTTP or HTTPS listeners.

Table 19-9 Protocols and load balancing types

Load Balancing Type	Protocol	Listener Types
Network load balancing	TCP/UDP	TCP and UDP listeners
Application load balancing	HTTP/HTTPS	HTTP and HTTPS listeners

19.26 Backend Servers

19.26.1 Why Is the Interval at Which Backend Servers Receive Health Check Packets Different from What I Have Configured?

Each LVS node and Nginx node in the ELB system send detection packets to backend servers at the health check interval that you have specified for the backend server group.

During this period, backend servers receive multiple detection packets from LVS and Nginx nodes. This makes it seem like backend servers are receiving packets at intervals shorter than the specified health check interval.

19.26.2 Can Backend Servers Access the Internet After They Are Associated with a Load Balancer?

Yes. Backend servers can access the Internet whether they are associated with a load balancer.

19.26.3 Why Are Backend Servers Frequently Accessed by IP Addresses in 100.125.0.0/16?

IP addresses in 100.125.0.0/16 and 100.126.0.0/16 are internal IP addresses used by load balancers to communicate with backend servers. Load balancers use these IP addresses as source addresses to route traffic to backend servers and to check the health of backend servers, if you have enabled health check.

To ensure that your load balancer can provide services properly, ensure that the security groups that contain the backend servers allow traffic from 100.125.0.0/16 and 100.126.0.0/16.

19.26.4 Can ELB Route Traffic Across Regions?

- Shared load balancers cannot distribute traffic across regions.
- Dedicated load balancers can distribute traffic across VPCs. For details about how to add backend servers in a different VPC or an on-premises data center, see Overview.

19.26.5 Does Each Backend Server Need an EIP to Receive Requests from a Public Network Load Balancer?

No. There is no need to bind an EIP to each backend server because the load balancer routes requests through the private network.

19.26.6 How Do I Check the Network Conditions of a Backend Server?

- 1. Verify that an IP address has been assigned to the server's primary NIC.
 - a. Log in to the server. (An ECS is used as an example here.)
 - b. Use **ifconfig** or **ip address** to view the IP address.

□ NOTE

For Windows ECSs, use ipconfig on the CLI.

- 2. Ping the gateway of the subnet where the ECS resides to check for network connectivity.
 - a. On the VPC details page, locate the subnet and view the gateway address in the **Gateway** column. Generally, the gateway address ends with .1.
 - b. Ping the gateway from the ECS. If the gateway cannot be pinged, check the networks at Layer 2 and Layer 3.

19.26.7 How Can I Check the Network Configuration of a Backend Server?

- 1. Check whether the security group of the server is correctly configured.
 - a. On the server details page, view the security group.
 - b. Check whether the security group rules allow access from the corresponding IP address range.
 - Dedicated load balancers: Check whether the security group of the backend server has inbound rules to allow traffic from the VPC where the load balancer works. If traffic is not allowed, add an inbound rule to allow traffic from the VPC to the backend server.
 - Shared load balancers: Check whether the security group of the backend server has inbound rules to allow traffic from the 100.125.0.0/16 and 100.126.0.0/16. If traffic is not allowed, add an inbound rule to allow traffic from 100.125.0.0/16 and 100.126.0.0/16 to the backend server.

^ CAUTION

- Shared load balancers: If Transfer Client IP Address is enabled for a
 TCP or UDP listener, there is no need to configure security group rules
 and Network ACL rules to allow traffic from 100.125.0.0/16,
 100.126.0.0/16, and client IP addresses to backend servers.
- Dedicated load balancers: If IP as a Backend is not enabled for a load balancer that has a TCP or UDP listener, there is no need to configure security group rules and Network ACL rules to allow traffic from the backend subnet where the load balancer is deployed to the backend servers.
- 2. Ensure that the network ACLs of the subnet where the server resides does not intercept the traffic.

In the navigation pane of the VPC console, choose **Access Control** > **Network ACLs** and check whether the subnet allows traffic.

19.26.8 How Do I Check the Status of a Backend Server?

1. Verify that the applications on the backend server are enabled.

- a. Log in to the backend server. (An ECS is used as an example here.)
- b. Check the port status.

netstat -ntpl

For Windows ECSs, use **netstat -ano** on the CLI to view the port status or server software status.

Figure 19-7 Port status

2. Check the network communication of the ECS.

For example, if the ECS uses port 80, use **curl** to check whether network connectivity is normal.

```
[root@ecs-67a0 ~]# curl 127.0.0.1:80 -v
 About to connect() to 127.0.0.1 port 80 (#0)
   Trying 127.0.0.1...
 Connected to 127.0.0.1 (127.0.0.1) port 80 (#0)
 GET / HTTP/1.1
 User-Agent: curl/7.29.0
 Host: 127.0.0.1
 Accept: */*
 HTTP/1.1 200
 Connection: close
 Content-length: 14
 Cache-Control: no-cache
 X-req: size=14, time=500 ms
 X-rsp: id=test1, code=200, cache=0, size=14, time=500 ms
nelloworld@!!
 Closing connection 0
root@ecs-67a0 ~]#
```

19.26.9 When Is a Backend Server Considered Healthy?

When a backend server is associated with a load balancer for the first time, the backend server is considered healthy after one health check. After this, the server is considered healthy only after the maximum number of health checks has been attempted.

19.26.10 How Do I Check Whether a Backend Server Can Be Accessed Through an EIP?

- 1. Bind an EIP to the backend Server.
 - a. Log in to the management console.
 - b. In the upper left corner of the page, click \bigcirc and select the desired region and project.

- c. Click = , and choose Computing > Elastic Cloud Server.
- d. Locate the ECS and click its name.
- e. Under EIPs, click Bind EIP.
- f. Select the EIP to be bound and click **OK**.
- 2. Verify that the ECS can be accessed through the EIP.

For Linux ECSs, use curl. For Windows ECSs, use a browser.

19.26.11 Why Is the Number of Active Connections Monitored by Cloud Eye Different from the Number of Connections Established with the Backend Servers?

The number of active connections collected by Cloud Eye refers to the number of active connections between clients and the load balancer.

For a TCP or UDP listener, the load balancer transparently transmits client requests. The number of active connections is equal to the number of connections that the load balancer establishes with backend servers.

For an HTTP or HTTPS listener, the clients connect to the load balancer, which then connects to backend servers. The number of active connections is not related to the number of connections established with backend servers.

19.26.12 Why Can I Access Backend Servers After a Whitelist Is Configured?

The whitelist controls only access to a listener. Only IP addresses in the whitelist can access the listener. To control access to backend servers, you can configure Network ACL or security group rules.

19.26.13 When Will Modified Weights Take Effect?

The new weights for backend servers take effect 5 seconds after the weights are configured.

- TCP and UDP listeners forward requests over new connections based on the new weights. However, connections that have been established with backend servers will not be affected.
- HTTP and HTTPS listeners forward requests based on the new weights.
 However, requests that have been forwarded to backend servers will not be affected.

NOTE

If the weight of a backend server is changed to 0, the new weight does not take effect immediately, and requests are still routed to this backend server. This is because a persistent connection is established between the load balancer and the backend server and requests are routed to this server until the connection times out.

- TCP and UDP listeners: Persistent connections are disconnected after the idle timeout duration expires.
- HTTP and HTTPS listeners: Persistent connections are disconnected after the response timeout duration expires.

19.26.14 Why Must the Subnet Where the Load Balancer Resides Have at Least 16 Available IP Addresses for Enabling IP as a Backend?

These IP addresses are used by the ELB system. Generally, two IP addresses are required for creating a dedicated load balancer in a single AZ, and six IP addresses are required for creating a dedicated load balancer with IP as a backend enabled. If you create a dedicated load balancer in multiple AZs, more IP addresses will be required. There is an algorithm to calculate how many IP addresses are required.

19.27 Health Checks

19.27.1 How Do I Troubleshoot an Unhealthy Backend Server?

Symptom

If a client cannot access a backend server through a load balancer, the backend server is declared unhealthy. You can view the health check results for a backend server on the ELB console.

Dedicated load balancers

On the **Load Balancers** page, click the name of the load balancer to view its details. Click **Backend Server Groups** and locate the server group. You can find the health check results for backend servers in the **Basic Information** area.

Shared load balancers

On the **Load Balancers** page, click the name of the load balancer to view its details. Click **Backend Server Groups** and locate the server group. You can find the health check results for backend servers in the **Basic Information** area.

Background

To check the health of backend servers, dedicated load balancers use the IP addresses from the backend subnet where they work to send heartbeat requests to the backend servers, while shared load balancers use IP addresses in 100.125.0.0/16 and 100.126.0.0/16.

Dedicated load balancers: To ensure that health checks can be performed as expected, ensure that traffic is allowed from the backend subnet where the load balancer is working to the backend servers.

Shared load balancers: To ensure that health checks can be performed as expected, ensure that traffic is allowed from 100.125.0.0/16 and 100.126.0.0/16 to the backend servers.

CAUTION

- Security group rules configured for backend servers associated with dedicated load balancers are different from those configured for backend servers associated with shared load balancers.
 - Dedicated load balancers: Ensure that security group rules allow access from IP addresses in the VPC where the backend server resides. For details about how to configure security groups for backend servers associated with dedicated load balancers, see Security Group Rules.
 - Shared load balancers: Ensure that the security group allows traffic from 100.125.0.0/16 and 100.126.0.0/16 to the backend server. For details, see Configuring a Security Group for Backend Servers (Shared Load Balancers).

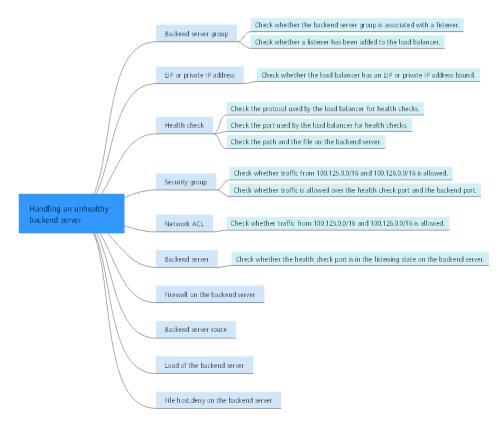
If a backend server is considered unhealthy, ELB will not route traffic to it until it is declared healthy again.

If you change the weight of a healthy backend server to 0, the health check result of this server becomes **Unhealthy**.

□ NOTE

- When a backend server is detected as unhealthy, the load balancer will stop routing requests to this server.
- If health checks are disabled, the load balancer will consider the backend server healthy by default and still route requests to it.
- If **Transfer Client IP Address** is enabled for TCP and UDP listeners of both dedicated and shared load balancers, client IP addresses instead of IP addresses in 100.125.0.0/16and 100.126.0.0/16 are used to communicate with the backend server.
- ELB uses IP addresses in 100.125.0.0/16and 100.126.0.0/16 to perform health checks and route requests to backend servers.
- Traffic will not be routed to a backend server with a weight of 0, so the health check result for this backend server is not relevant.

Troubleshooting


Possible causes are described here in order of how likely they are to occur.

Check these causes one by one until you find the cause of this issue.

It takes a while for the modification to take effect after you change the health check configuration. The required time depends on health check interval and timeout duration. You can view the health check result in the backend server list of target load balancer.

Figure 19-8 Troubleshooting process

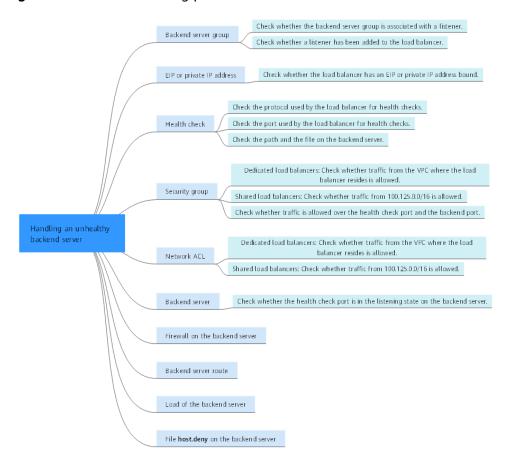


Figure 19-9 Troubleshooting process

Table 19-10 Troubleshooting process

Table 15 10 Housteshooting process		
Possible Cause	Solution	
Backend server group	Checking Whether the Backend Server Group Is Associated with a Listener	
EIP or private IP address	Checking Whether an EIP or a Private IP Address Is Bound to the Load Balancer	
Health check configuration	Checking the Health Check Configuration	
Security group rules	Checking Security Group Rules	
Network ACL rules	Checking Network ACL Rules	
Backend server listening configuration	Checking the Backend Server	
Network ACL rules	Checking the Firewall on the Backend Server	
Backend server route	Checking the Backend Server Route	
Backend server load	Checking the Backend Server Load	

Possible Cause	Solution
Backend server host.deny file	Checking the hosts.deny File

Checking Whether the Backend Server Group Is Associated with a Listener

Check whether the backend server group that the unhealthy backend server belongs to is associated with a listener.

- If the backend server group is not associated with a listener, check whether a listener has been added to the load balancer.
 - If there is a listener, associate the backend server group with the listener.
 - If there are no listeners, add a listener. Select **Use existing** and then select the backend server group when you add the listener.
- If the backend server group has been associated with a listener, proceed with the following operations.

Checking Whether an EIP or a Private IP Address Is Bound to the Load Balancer

∩ NOTE

- Check this only when you add a TCP or UDP listener to the load balancer.
- If you add an HTTP or HTTPS listener to the load balancer, health checks will not be affected no matter whether an EIP or private IP address is bound to the load balancer.

If you add a TCP or UDP listener to the load balancer, check whether the load balancer has an EIP or private IP address bound.

If the load balancer has no EIP or private IP address bound, bind one.

□ NOTE

When you create a load balancer for the first time, if no EIP or private IP address is bound to the load balancer, the health check result of backend servers associated with a TCP or UDP listener is **Unhealthy**. After you bind an EIP or private IP address to the load balancer, the health check result becomes **Healthy**. If you unbind the EIP or private IP address from the load balancer, the health check result is still **Healthy**.

Checking the Health Check Configuration

Click the name of the load balancer to view its details. Navigate to **Backend Server Groups** and then click the name of the server group. In the **Basic Information** area, to the right of **Health Check**, click **Configure**. Check the following parameters:

- Domain Name: If you use HTTP for health checks and the backend server is configured to verify the Host header, enter the domain name configured for the backend server.
- **Protocol**: The protocol used for health checks.

- Port: The port must be the one used on the backend server, and it cannot be changed. Check whether the health check port is in the listening state on the backend server. If it is not, the backend server will be identified as unhealthy.
- Health Check Mode
- **Check Path**: If HTTP is used for health checks, you must check this parameter. A simple static HTML file is recommended.

• Enter an absolute path.

For example:

If the URL is http://www.example.com or http://192.168.63.187:9096, enter / as the health check path.

If the URL is http://www.example.com/chat/try/, enter /chat/try/ as the health check path.

If the URL is http://192.168.63.187:9096/chat/index.html, enter /chat/index.html as the health check path.

Checking Security Group Rules

- Dedicated Load balancers
 - TCP, HTTP, or HTTPS listeners: Verify that the inbound security group rule allows TCP traffic from the VPC where the dedicated load balancer resides to the backend server over the health check port.
 - If the health check port is the same as the backend port, the inbound rule must allow traffic over the backend port, for example, port 80.
 - If the port (port 80 as an example) for health check is different from that used by the backend server (port 443 as an example), inbound security group rules must allow traffic over both ports.

You can check the protocol and port in the **Basic Information** area of the backend server group.

Figure 19-10 Example inbound rule

 UDP listeners: Verify that the inbound security group rule allows traffic from the VPC where the dedicated load balancer resides to the backend server using the health check protocol and over the health check port. In addition, the rule must allow inbound ICMP traffic.

Figure 19-11 Example inbound rule that allows ICMP traffic

Shared Load Balancers

- TCP, HTTP, or HTTPS listeners: Verify that the inbound rule of the security group containing the backend server allows access from 100.125.0.0/16 and 100.126.0.0/16 and allows the traffic from the health check port.
 - If the health check port is the same as the backend port, the inbound rule must allow traffic over the backend port, for example, port 80.
 - If the port (port 80 as an example) for health check is different from that used by the backend server (port 443 as an example), inbound security group rules must allow traffic over both ports.

You can check the protocol and port in the **Basic Information** area of the backend server group.

Figure 19-12 Example inbound rule

 UDP listeners: Verify that the inbound security group rule allows traffic from 100.125.0.0/16 and 100.126.0.0/16 to the backend server using the health check protocol and over the health check port. In addition, the rule must allow inbound ICMP traffic.

Figure 19-13 Example inbound rule that allows ICMP traffic

∩ NOTE

- Access to the backend server from IP addresses in 100.125.0.0/16 and 100.126.0.0/16
 must be allowed. This is because the load balancer communicates with backend servers
 using these IP addresses. After traffic is routed to backend servers, source IP addresses
 are converted to IP addresses from 100.125.0.0/16 and 100.126.0.0/16. In addition, the
 load balancer uses these IP addresses to send heartbeat requests to backend servers to
 check their health.
- If you are not sure about the security group rules, change the **Protocol & Port** to **All** for testing.
- For UDP listeners, see How Does ELB Perform UDP Health Checks? What Are the Precautions for UDP Health Checks?

Checking Network ACL Rules

Dedicated load balancers

To control traffic in and out of a subnet, you can associate a network ACL with the subnet. Network ACL rules control access to subnets and add an additional layer of defense to your subnets. Default network ACL rules reject all inbound and outbound traffic. If the subnet of a load balancer or associated backend servers has a network ACL associated, the load balancer

cannot receive traffic from the Internet or route traffic to backend servers, and backend servers cannot receive traffic from and respond to the load balancer.

Configure an inbound network ACL rule to allow traffic from the VPC where the load balancer resides to backend servers.

- a. Log in to the management console.
- b. In the upper left corner of the page, click and select the desired region and project.
- c. Click in the upper left corner of the page and choose **Network** > **Virtual Private Cloud**.
- d. In the navigation pane on the left, choose **Access Control** > **Network ACLs**.
- e. In the network ACL list, click the name of the network ACL to switch to the page showing its details.
- f. On the **Inbound Rules** or **Outbound Rules** tab page, click **Add Rule** to add a rule.
 - Action: Select Allow.
 - Protocol: The protocol must be the same as the one you selected for the listener.
 - **Source**: Set it to the VPC CIDR block.
 - Source Port Range: Select a port range.
 - Destination: Enter a destination address allowed in this direction. If you keep the default value, 0.0.0.0/0, traffic will be allowed for all destination IP addresses.
 - Destination Port Range: Select a port range.
 - Optional) Description: Describe the network ACL rule if necessary.
- g. Click OK.

• Shared load balancers

To control traffic in and out of a subnet, you can associate a network ACL with the subnet. Network ACL rules control access to subnets and add an additional layer of defense to your subnets. Default network ACL rules reject all inbound and outbound traffic. If the subnet of a load balancer or associated backend servers has a network ACL associated, the load balancer cannot receive traffic from the Internet or route traffic to backend servers, and backend servers cannot receive traffic from and respond to the load balancer.

You can configure an inbound network ACL rule to permit access from 100.125.0.0/16 and 100.126.0.0/16.

- a. Log in to the management console.
- b. In the upper left corner of the page, click of and select the desired region and project.

- c. Click in the upper left corner of the page and choose **Network** > **Virtual Private Cloud**.
- d. In the navigation pane on the left, choose **Access Control** > **Network ACLs**.
- e. In the network ACL list, click the name of the network ACL to switch to the page showing its details.
- f. On the **Inbound Rules** or **Outbound Rules** tab page, click **Add Rule** to add a rule.
 - Action: Select Allow.
 - Protocol: The protocol must be the same as the one you selected for the listener.
 - **Source**: Set it to 100.125.0.0/16.
 - Source Port Range: Select a port range.
 - Destination: Enter a destination address allowed in this direction. If you keep the default value, 0.0.0.0/0, traffic will be allowed for all destination IP addresses.
 - Destination Port Range: Select a port range.
 - (Optional) Description: Describe the network ACL rule if necessary.
- g. Click OK.

Checking the Backend Server

◯ NOTE

If the backend server runs on Windows, use a browser to access https://{Backend server IP address}.{Health check port}. If a 2xx or 3xx code is returned, the backend server is running normally.

• Run the following command on the backend server to check whether the health check port is listened on:

netstat -anlp | grep port

If the health check port and **LISTEN** are displayed, the health check port is in the listening state. As shown in **Figure 19-14**, TCP port 880 is listened on. If you do not specify a health check port, backend ports are used by default.

Figure 19-14 Backend server port listened on

Figure 19-15 Backend server port not listened on

```
[root©donatdel-wangfei-iperf ~]# netstat -anlp | grep 8080
[root©donatdel-wangfei-iperf ~]# ■
```

If the health check port is not in the listening state, the backend server is not listened on. You need to start the application on the backend server and check whether the health check port is listened on.

 For HTTP health checks, run the following command on the backend server to check the status code:

curl Private IP address of the backend server: Health check port/Health check path -iv

To perform an HTTP health check, the load balancer initiates a GET request to the backend server. If the following response status codes are displayed, the backend server is considered healthy:

TCP listeners: 200

Dedicated load balancers: 200 for HTTP/HTTPS health checks Shared load balancers: 200, 202, or 401 for HTTP health check

Figure 19-16 Unhealthy backend server

```
[root#host-xxx~]# curl 192.168.0.58:8080/index.html -iv
* About to connect() to 192.168.0.58 port 8080 (#0)
* Trying 192.168.0.58...
* Connected to 192.168.0.58 (192.168.0.58) port 8080 (#0)
> GET /index.html HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.58:8080
> Accept: */*
>
* HTTP 1.0, assume close after body
< HTTP/1.0 404 File not found
HTTP/1.0 404 File not found
< Server: SimpleHTTP/0.6 Python/2.7.5</pre>
```

Figure 19-17 Healthy backend server

```
[root#host-xxx~]# curl 192.168.0.58:8080/index.html -iv
* About to connect() to 192.168.0.58 port 8080 (#0)
* Trying 192.168.0.58...
* Connected to 192.168.0.58 (192.168.0.58) port 8080 (#0)
> GET /index.html HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.58:8080
> Accept: */*
>
192.168.0.58 . . [08/Apr/2019 17:37:34] *GET /index.html HTTP/1.1* 200
* HTTP 1.0, assume close after body
< HTTP/1.0 200 0K
HTTP/1.0 200 0K
< Server: SimpleHTTP/0.6 Python/2.7.5</pre>
```

• If HTTP is used for health checks and the backend server is detected unhealthy, perform the following steps to configure a TCP health check:

On the **Listeners** tab page, modify the target listener, select the backend server group for which TCP health check has been configured, or add a backend server group and select TCP as the health check protocol. After you complete the configuration, wait for a while and check the health check result.

Checking the Firewall on the Backend Server

If the firewall or other security software is enabled on the backend server, the software may block the IP addresses in the backend subnet of the load balancer, or 100.125.0.0/16 and 100.126.0.0/16.

For dedicated load balancers, configure inbound firewall rules to allow traffic from the backend subnet where the load balancer work to backend servers. For shared load balancers, configure inbound firewall rules to allow traffic from 100.125.0.0/16 and 100.126.0.0/16 to backend servers.

Checking the Backend Server Route

Check whether the default route configured for the primary NIC (for example, eth0) has been manually modified. If the default route is changed, health check packets may fail to reach the backend server.

Run the following command on the backend server to check whether the default route points to the gateway (For Layer 3 communications, the default route must be configured to point to the gateway of the VPC subnet where the backend server resides):

ip route

Alternatively, run the following command:

route -n

Figure 19-18 shows the command output when the backend server route is normal.

Figure 19-18 Example default route pointing to the gateway

```
[root®donatdel wangfei iperf ~]# ip route
default via 192.168.2.1 dev etho proto dhcp metric 100
169.254.169.254 via 192.168.2.1 dev etho proto dhcp metric 100
192.168.2.0/24 dev etho proto kernel scope link src 192.168.2.124 metric 100
| root®donatdel wangfei iperf ~]# ■
```

Figure 19-19 Example default route not pointing to the gateway

```
[root@test ~]# ip route
default via 192.168.0.134 dev eth0
169.254.0.0/16 dev eth0 scope link metric 1002
169.254.169.254 via 192.168.0.1 dev eth0 proto static
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.242
```

If the command output does not contain the first route, or the route does not point to the gateway, configure or modify the default route to point to the gateway.

Checking the Backend Server Load

View the vCPU usage, memory usage, network connections of the backend server on the Cloud Eye console to check whether the backend server is overloaded.

If the load is high, connections or requests for health checks may time out.

Checking the hosts.deny File

Verify that IP addresses in VPC where the load balancers work and 100.125.0.0/16 and 100.126.0.0/16 are not written to the **/etc/hosts.deny** file on the backend server.

For dedicated load balancers, verify that the IP addresses from the VPC where the load balancers work are not written into the file.

For shared load balancers, verify that IP addresses from 100.125.0.0/16 and 100.126.0.0/16 are not written into the file.

19.27.2 Why Is the Interval at Which Backend Servers Receive Health Check Packets Different from the Configured Interval?

Each LVS node and Nginx node in the ELB system detect backend servers at the health check interval that you have specified for the backend server group.

During this period, backend servers receive detection packets from multiple nodes. This makes it seem that backend servers receive these packets at intervals shorter than the specified health check interval.

19.27.3 How Does ELB Perform UDP Health Checks? What Are the Precautions for UDP Health Checks?

How UDP Health Checks Work

UDP is a connectionless protocol. A UDP health check is implemented as follows:

- The health check node sends an ICMP request to the backend server based on the health check configuration.
 - If the health check node receives an ICMP reply from the backend server, it considers the backend server healthy and continues the health check.
 - If the health check node does not receive an ICMP reply from the backend server, it considers the backend server unhealthy.
- After receiving the ICMP reply, the health check node sends a UDP probe packet to the backend server.
 - If the health check node receives an ICMP Port Unreachable message from the backend server within the timeout duration, the backend server is considered unhealthy.
 - If the health check node does not receive an ICMP Port Unreachable message from the backend server within the timeout duration, the backend server is considered healthy.

When you use UDP for health checks, retain default parameter settings.

Troubleshooting

If the backend server is unhealthy, use either of the following methods to locate the fault:

• Check whether the timeout duration is too short.

One possible cause is that the ICMP Echo Reply or ICMP Port Unreachable message returned by the backend server does not reach the health check node within the timeout duration. As a result, the health check result is inaccurate.

It is recommended that you change the timeout duration to a larger value. UDP health checks are different from other health checks. If the health check timeout duration is too short, the health check result of the backend server frequently toggles back and forth between **Healthy** and **Unhealthy**.

• Check whether the backend server restricts the rate at which ICMP messages are generated.

For Linux servers, run the following commands to query the rate limit and rate mask:

sysctl -q net.ipv4.icmp_ratelimit

The default rate limit is 1000.

sysctl -q net.ipv4.icmp_ratemask

The default rate mask is 6168.

If the returned value of the first command is the default value or **0**, run the following command to remove the rate limit of Port Unreachable messages:

sysctl -w net.ipv4.icmp_ratemask=6160

For more information, see the *Linux Programmer's Manual*. On the Linux CLI, run the following command to display the manual:

man 7 icmp

Alternatively, visit http://man7.org/linux/man-pages/man7/icmp.7.html.

Ⅲ NOTE

Once the rate limit is lifted, the number of ICMP Port Unreachable messages on the backend server will not be limited.

Precautions

Note the following when you configure UDP health checks:

 UDP health checks use ping packets to check the health of the backend server. To ensure smooth transmission of these packets, ensure that ICMP is enabled on the backend server by performing the following:

Log in to the server and run the following command as user **root**:

cat /proc/sys/net/ipv4/icmp_echo_ignore_all

- If the returned value is 1, ICMP is disabled.
- If the returned value is 0, ICMP is enabled.
- The health check result may be different from the actual health of the backend server.

If the backend server runs Linux, the rate of ICMP packets may be limited due to Linux's defense against ping flood attacks when there is a large number of concurrent requests. In this case, if a service exception occurs, the load balancer will not receive error message **port XX unreachable** and will consider the health check to be successful. As a result, there is an inconsistency between the health check result and the actual server health.

19.27.4 Why Does ELB Frequently Send Requests to Backend Servers During Health Checks?

ELB is deployed in clusters, and all nodes for request forwarding in the cluster send requests to backend servers at the same time. If the health check interval is

too short, health checks are performed once every few seconds, and a large number of packets are sent to backend servers. To control the frequency of access to backend servers, change the health check interval by referring to **Modifying Health Check Settings**.

19.27.5 When Does a Health Check Start?

After a backend server is added to a backend server group, the health check is performed at a random time during the first interval and then at the specified interval.

19.27.6 Do Maximum Retries Include Health Checks That Consider Backend Servers Unhealthy?

Yes. Maximum retries are the maximum number of health checks after which a backend server is detected healthy or the maximum number of health checks after which the same backend server is detected unhealthy.

19.27.7 What Do I Do If a Lot of Access Logs Are Generated During Health Checks?

1. You can increase the health check interval by referring to **Modifying Health Check Settings**.

Risk: After the health check interval is prolonged, the time for the load balancer to detect unhealthy servers will increase.

2. You can disable the health check by referring to **Modifying Health Check Settings**.

Risk: After health checks are disabled, the load balancer will not check the backend servers. If a backend server becomes faulty, the load balancer will still route requests to this server.

19.27.8 What Status Codes Will Be Returned If Backend Servers Are Identified as Healthy?

Table 19-11 Health check status codes

Load Balancer Type	Health Check Protocol	Status Code
Dedicated load balancers	НТТР	200
	HTTPS	200
Shared load balancers	НТТР	200202401

19.28 Obtaining Source IP Addresses

19.28.1 How Can I Transfer the IP Address of a Client?

When you use ELB to route requests to backend servers, IP addresses of the clients will be translated by the ELB. This FAQ guides you to obtain the IP addresses of the clients.

- Load balancing at Layer 7 (HTTP or HTTPS listeners): Configure the
 application server and obtain the IP address of a client from the HTTP header.
 For details, see Layer 7 Load Balancing.
- For load balancing at Layer 4 (TCP/UDP), you can enable **Transfer Client IP Address** to obtain the source IP address.

Constraints and Limitations

- If Network Address Translation (NAT) is used, you cannot obtain the IP addresses of the clients.
- If the client is a container, you can obtain only the IP address of the node where the container is located, but cannot obtain the IP address of the container.
- If **Transfer Client IP Address** is enabled for TCP or UDP listeners, a cloud server cannot be used as a backend server and a client at the same time.
- By default, the **Transfer Client IP Address** function is enabled for TCP and UDP listeners of dedicated load balancers and cannot be disabled.

Layer 7 Load Balancing

Configure the application server and obtain the IP address of a client from the HTTP header.

The real IP address is placed in the X-Forwarded-For header field by the load balancer in the following format:

X-Forwarded-For: IP address of the client, Proxy server 1-IP address, Proxy server 2-IP address,...

If you use this method, the first IP address obtained is the IP address of the client.

Apache Server

1. Install Apache 2.4.

For example, if CentOS 7.5 is used as the OS, run the following command to install the software:

yum install httpd

Add the following content to the end of Apache configuration file /etc/httpd/ conf/httpd.conf:

LoadModule remoteip_module modules/mod_remoteip.so RemoteIPHeader X-Forwarded-For RemoteIPInternalProxy 100.125.0.0/16

Figure 19-20 Content to be added

```
LoadModule remoteip_module modules/mod_remoteip.so
RemoteIPHeader X-Forwarded-For
RemoteIPInternalProxy 100.125.0.0/16
```

Ⅲ NOTE

Add the IP address range of the proxy server after **RemoteIPInternalProxy**.

- Shared load balancers: 100.125.0.0/16, 100.126.0.0/16, and the IP address range used by the AAD service. Load balancers use IP addresses in 100.125.0.0/16 and 100.126.0.0/16 to communicate with backend servers, and there are no security risks. Use commas (,) to separate multiple entries.
- Dedicated load balancers: CIDR block of the subnet where the load balancer resides
- 3. Change the log output format in the Apache configuration file to the following (%a indicates the source IP address):

 LogFormat "%a %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
- 4. Restart Apache. systemctl restart httpd
- 5. Obtain the actual IP address of the client from the httpd access logs.

Nginx Server

For example, if CentOS 7.5 is used as the OS, run the following command to install the software:

1. Run the following commands to install http_realip_module:

```
yum -y install gcc pcre pcre-devel zlib zlib-devel openssl-devel
wget http://nginx.org/download/nginx-1.17.0.tar.gz
tar zxvf nginx-1.17.0.tar.gz
cd nginx-1.17.0
./configure --prefix=/path/server/nginx --with-http_stub_status_module --without-http-cache --with-
http_ssl_module --with-http_realip_module
make
make install
```

- 2. Run the following command to open the **nginx.conf** file: vi /path/server/nginx/conf/nginx.conf
- Add new fields and information to the end of the following configuration information:

Add the following information under **http** or **server**:

```
set_real_ip_from 100.125.0.0/16;
real_ip_header X-Forwarded-For;
```

Figure 19-21 Adding information

```
server {
    listen 80;
    server_name localhost;

set_real_ip_from 100.125.0.0/16;
    real_ip_header X-Forwarded-For;
```

□ NOTE

Add the IP address range of the proxy server after RemotelPInternalProxy.

- Shared load balancers: 100.125.0.0/16, 100.126.0.0/16, and the IP address range used by the AAD service. Load balancers use IP addresses in 100.125.0.0/16 and 100.126.0.0/16 to communicate with backend servers, and there are no security risks. Use commas (,) to separate multiple entries.
- Dedicated load balancers: CIDR block of the subnet where the load balancer resides
- 4. Start Nginx.

/path/server/nginx/sbin/nginx

5. Obtain the actual IP address of the client from the Nginx access logs. cat /path/server/nginx/logs/access.log

Tomcat Servers

In the following operations, the Tomcat installation path is /usr/tomcat/tomcat8/.

- 1. Log in to a server on which Tomcat is installed.
- Check whether Tomcat is running properly.

ps -ef|grep tomcat netstat -anpt|grep java

Figure 19-22 Tomcat running properly

 Modify className="org.apache.catalina.valves.AccessLogValve" in the server.xml file as follows:

```
vim /usr/tomcat/tomcat8/conf/server.xml
<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
prefix="localhost_access_log." suffix=".txt"
pattern="%{X-FORWARDED-FOR}i %l %u %t %r %s %b %D %q %{User-Agent}i %T"
resolveHosts="false" />
```

Figure 19-23 Example configuration

4. Restart the Tomcat service.

cd /usr/tomcat/tomcat8/bin && sh shutdown.sh && sh startup.sh

/usr/tomcat/tomcat8/ is where Tomcat is installed. Change it based on site requirements.

Figure 19-24 Restarting the Tomcat service

```
[root@ecs-ddef bin]# sh startup.sh
Using CATALINA_BASE: /usr/tomcat/tomcat8
Using CATALINA_HOME: /usr/tomcat/tomcat8
Using CATALINA_TMPDIR: /usr/tomcat/tomcat8/temp
Using JRE_HOME: /usr/java/jdk1.8.0_261
Using CLASSPATH: /usr/tomcat/tomcat8/bin/bootst
Tomcat started.
```

5. View the latest logs.

As highlighted in the following figure, IP addresses that are not in the IP address range starting with 100.125 are the source IP addresses.

```
cd /usr/tomcat/tomcat8/logs/
cat localhost_access_log..2021-11-29.txt
```

In this command, **localhost_access_log..2021-11-29.txt** indicates the log path of the current day. Change it based on site requirements.

Figure 19-25 Querying the source IP address

Windows Server with IIS Deployed

The following uses Windows Server 2012 with IIS7 as an example to describe how to obtain the source IP address.

- 1. Download and install IIS.
- Download the F5XForwardedFor.dll plug-in and copy the plug-ins in the x86 and x64 directories to a directory for which IIS has the access permission, for example, C:\F5XForwardedFor2008.
- 3. Open the Server Manager and choose **Modules** > **Configure Native Modules**.

Figure 19-26 Selecting modules

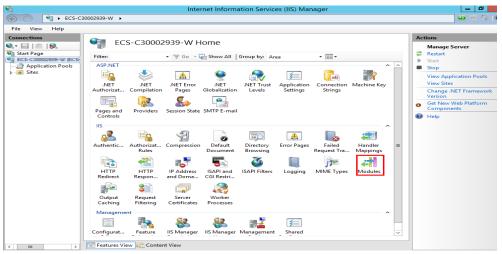
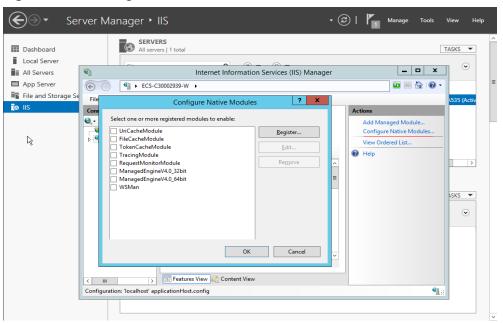
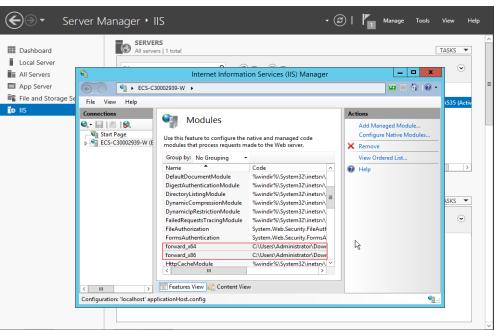



Figure 19-27 Configure Native Modules


4. Click **Register** to register the x86 and x64 plug-ins.

→ ② | Manage Tools View Server Manager • IIS SERVERS
All servers | 1 total ■ Dashboard TASKS -Local Server _ 🗆 X All Servers Internet Information Services (IIS) Manager App Server <u>□</u> ⊠ 🔄 | ② • (e) ● ECS-C30002939-W ▶ File and Storage S File Configure Native Modules IIS Con **Q**,≠ Add Managed Module.. ☐ UriCacheModule Configure Native Modules ? X Register Native Module View Ordered List... forward_x64 Path: C:\Users\Administrator\Downloads\F5XForwardedFor\x64\F5XForwar ASKS -• OK Cancel OK Cancel Features View Content View Configuration: 'localhost' applicationHost.config **1**

Figure 19-28 Registering plug-ins

5. In the **Modules** dialog box, verify that the registered plug-ins are displayed in the list.

6. Select **ISAPI Filters** on the Server Manager homepage and authorize two plug-ins to run ISAPI and CGI extensions.

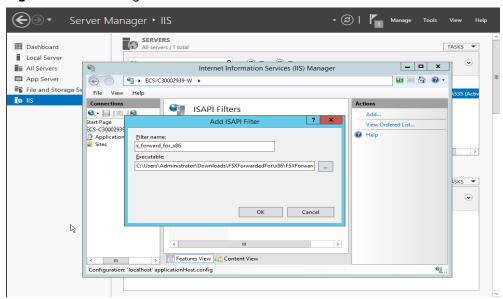
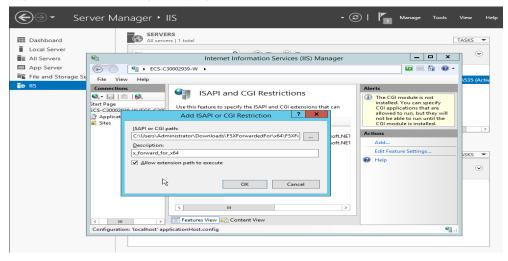



Figure 19-30 Adding authorization

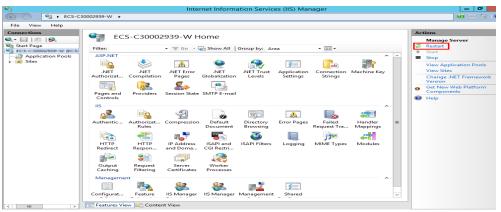

7. Select **ISAPI and CGI Restriction** to set the execution permission for the two plug-ins.

Figure 19-31 Allowing the plug-ins to execute

8. Click **Restart** on the homepage to restart IIS. The configuration will take effect after the restart.

Figure 19-32 Restarting IIS

Layer 4 Load Balancing

For load balancing at Layer 4 (TCP/UDP), you can enable the **Transfer Client IP Address** function to obtain the source IP address.

1. Perform the following steps to enable the function:

□ NOTE

If you enable this function, a server cannot serve as both a backend server and a client. If the client and the backend server use the same server and the **Transfer Client IP Address** option is enabled, the backend server will think the packet from the client is sent by itself and will not return a response packet to the load balancer. As a result, the return traffic will be interrupted.

<u>A</u> CAUTION

- Xen ECSs do not support this function.
- BMSs do not support this function.
- After this function is enabled, traffic, such as unidirectional download or
 push traffic, may be interrupted when backend servers are being migrated
 during the migration of the associated classic load balancer. After backend
 servers are migrated, retransmit the packets to restore the traffic.
- After this function is enabled, the associated backend servers cannot be used as clients to access the listener.
- If a backend server has been associated with the listener and health checks are enabled, enabling this function will check the health of the backend server, and traffic to this server will be interrupted for two health check intervals.
- a. Log in to the management console.
- b. In the upper left corner of the page, click \bigcirc and select the desired region and project.
- c. Hover on in the upper left corner to display **Service List** and choose **Network > Elastic Load Balance**.

- d. In the load balancer list, click the name of the load balancer.
- e. Click Listeners.
 - To add a listener, click Add Listener.
 - To modify a listener, locate the listener, click on the right of its name, and click **Modify Listener**. In the **Modify Listener** dialog box, modify the parameters as needed.
- f. Enable Transfer Client IP Address.
- 2. Configure security groups, network ACLs, and OS and software security policies so that IP addresses of the clients can access these backend servers.
- Method 1 (for TCP or UDP listeners): Enable Transfer Client IP Address.

CAUTION

- BMSs do not support this function.
- After this function is enabled, traffic, such as unidirectional download or
 push traffic, may be interrupted when backend servers are being migrated
 during the migration of the associated classic load balancer. After backend
 servers are migrated, retransmit the packets to restore the traffic.
- After this function is enabled, the associated backend servers cannot be used as clients to access the listener.
- If a backend server has been associated with the listener and health checks are enabled, enabling this function will check the health of the backend server, and traffic to this server will be interrupted for two health check intervals.
- a. Perform the following steps to enable the function:
 - i. Log in to the management console.
 - ii. In the upper left corner of the page, click $^{\bigcirc}$ and select the desired region and project.
 - iii. Hover on in the upper left corner to display Service List and choose Network > Elastic Load Balance.
 - iv. In the load balancer list, click the name of the load balancer.
 - v. Click **Listeners**.
 - o To add a listener, click **Add Listener**.
 - To modify a listener, locate the listener, click on the right of its name, and click Modify Listener. In the Modify Listener dialog box, modify the parameters as needed.
 - vi. Enable Transfer Client IP Address.
- b. Configure security groups, network ACLs, and OS and software security policies so that IP addresses of the clients can access these backend servers.

If you enable this function, a server cannot serve as both a backend server and a client. If the client and the backend server use the same server and the **Transfer Client IP Address** option is enabled, the backend server will think the packet from the client is sent by itself and will not return a response packet to the load balancer. As a result, the return traffic will be interrupted.

19.29 HTTP/HTTPS Listeners

19.29.1 Which Protocol Should I Select for the Backend Server Group When Adding an HTTPS Listener?

To use HTTPS at both the frontend and backend, you can create a dedicated load balancer, add an HTTPS listener to the load balancer, and set the backend protocol to HTTPS.

To use HTTPS at the frontend only, you can create a dedicated load balancer, add an HTTPS listener to the load balancer, and set the backend protocol to HTTP.

□ NOTE

Using HTTPS at both the frontend and backend only allows you to enable mutual authentication on the load balancer and backend servers.

19.29.2 Why Is There a Security Warning After a Certificate Is Configured?

The following may cause the Not Secure warning even after a certificate is configured:

- The domain name used by the certificate is different from the domain name accessed by users. (If this is the case, check the domain name used the certificate to ensure that the domain names are the same or create a selfsigned certificate.)
- SNI is configured, but the specified domain name is different from the one used by the certificate.
- The domain name level is inconsistent with the certificate level.

If the problem persists, run the **curl** *{Domain name}* command to locate the fault based on the error information returned by the system.

19.29.3 Why Is a Forwarding Policy in the Faulty State?

A possible cause is that you added a forwarding policy that is the same as an existing one. Even if you delete the existing forwarding policy, the newly-added forwarding policy is still faulty.

To resolve this issue, delete the newly-added forwarding policy and add a different one.

19.29.4 Why Can't I Add a Forwarding Policy to a Listener?

Check the listener protocol.

Forwarding policies can only be added to HTTP and HTTPS listeners.

19.29.5 Why Cannot I Select an Existing Backend Server Group When Adding a Forwarding Policy?

This is because the backend server group has been used by another forwarding policy. A backend server group can be used by only one forwarding policy.

19.30 Sticky Sessions

19.30.1 What Are the Differences Between Persistent Connections and Sticky Sessions?

Persistent connections are not necessarily related to sticky sessions.

A persistent connection allows multiple data packets to be sent continuously over a TCP connection. If no data packets are sent over the connection, the client and the server need to send link detection packets to each other. Sticky sessions enable all requests from the same client during one session to be sent to the same backend server.

19.30.2 How Do I Check If Sticky Sessions Failed to Take Effect?

- 1. Check whether sticky sessions are enabled for the backend server group. If sticky sessions are enabled, go to the next step.
- 2. Check the health check result of the backend server. If the health check result is **Unhealthy**, traffic is routed to other backend servers and sticky sessions become invalid.
- 3. If you select the source IP hash algorithm, check whether the IP address of the request changes before the load balancer receives the request.
- 4. If sticky sessions are enabled for an HTTP or HTTPS listener, check whether the request carries a cookie. If they are, check whether the cookie value changed (because load balancing at Layer 7 uses cookies to maintain sessions).

19.30.3 How Do I Test Sticky Sessions Using Linux Curl Commands?

- 1. Prepare required resources.
 - a. Buy three ECSs, one as the client and the other two as backend servers.
 - b. Create a load balancer and add an HTTP listener to the load balancer. Enable sticky sessions when you add the listener.

2. Start the HTTP service of the two backend servers.

Log in to a backend server and create a file named **1.file** in the current directory to mark this server.

Run the following command in the current directory to start the HTTP service:

nohup python -m SimpleHTTPServer 80 &

Run the following command to check whether the HTTP service is normal: curl http://127.0.0.1:80

Log in to the other backend server and create a file named **2.file** in the current directory.

Run the following command in the current directory to start the HTTP service:

nohup python -m SimpleHTTPServer 80 &

Run the following command to check whether the HTTP service is normal: curl http://127.0.0.1:80

3. Access the load balancer from the client and specify the cookie value.

The following is an example command. Change the parameters as needed. Ensure that the returned file names of each request are the same.

curl --cookie "name=abcd" http://ELB_IP:Port

```
(body)
(h22)Directory listing for /</br>
(h22)
(hr2)
(il)(a href=".bash_history").bash_history</a>
(il)(a href=".bash_logout").bash_logout</a>
(il)(a href=".bash_logout").bash_logout</a>
(il)(a href=".bash_logout").bash_logout</a>
(il)(a href=".bash_logout").bash_logout</a>
(il)(a href=".sahre").bashrc</a>
(il)(a href=".sahre").cahrc</a>
(il)(a href=".sahre").shistory</a>
(il)(a href=".shir").shistory</a>
(il)(a href=".shir").shistory</a>
(il)(a href=".shir").shistory</a>
(il)(a href=".shir").shistor</a>
(il)(a href=".shirt=".shirt").shistor</a>
(il)(a href=".shirt=".shirt").shistor</a>
(il)(a href=".shirt=".shirt").shistory</a>
(il)(a href=".shirt=".shirt").shistory</a>
(il)(a href=".bash_listory").bash_history</a>
(il)(a href=".bash_listory").bash_listory</a>
(il)(a href=".bash_listory").bash_listory</a>
(il)(a href=".bash_listory").shistory</a>
(il)(a href=".shistory").shistory</a>
(il)(a href=".shistory")
```

19.30.4 What Types of Sticky Sessions Does ELB Support?

Dedicated load balancers: Source IP address and Load balancer cookie

Shared load balancers: **Source IP address**, **Load balancer cookie**, and **Application cookie**

19.31 Certificates

19.31.1 How Can I Create Server Certificates and CA Certificates?

Refer to **Mutual Authentication** to create server certificates and CA certificates. Generally, only backend servers need to be authenticated. You only need to configure server certificates.

19.31.2 Does ELB Support Wildcard Certificates?

Yes.

Shared load balancers support the longest suffix match by default.

Dedicated load balancers using a SNI certificate support wildcard match by default. Only the subdomain names of the same level can be matched. You can change wildcard match to longest suffix match by changing the value of **sni_match_algo**. For details, see *Elastic Load Balance API Reference*.

Table 19-12 Examples of wildcard-domain matching rules

Domain Name	Wildcard Match	Longest Suffix Match
*.example.co m	Domain names, such as abc.example.com, sport.example.com, and good.example.com	Domain names, such as abc.example.com and mycalc.good.example.com

19.31.3 Why Is Access to Backend Servers Still Abnormal Even If I Have Created a Certificate?

The following are possible causes:

• You have created a certificate on the ELB console, but you do not have an HTTPS listener.

To solve this problem, perform the following steps:

- Continue using the current listener and install the certificate on the backend server.
- Delete the current listener, add an HTTPS listener, and bind a certificate to the HTTPS listener.

- You have created a certificate on the **Certificates** page and are using an HTTPS listener, but you have not bound the certificate to the listener.
- Your certificate has expired.
- The domain name is different from the one specified when you create the certificate
- A certificate chain is used, but its format is incorrect.

19.31.4 Will the Network or Load Balancing Be Interrupted When a Certificate Is Being Replaced?

Nο

The new certificate takes effect immediately after the replacement. The old certificate is used for established connections, and the new one is used for new connections.

□ NOTE

When the certificate expires, the system displays a message indicating that the connection is insecure. However, you can ignore the warning and continue accessing the website.

19.32 Monitoring

19.32.1 Why Is the Outgoing Rate on the ELB Console Inconsistent with the Bandwidth Usage Statistics on the Cloud Eye Console?

In the following scenarios, outgoing rate monitored by ELB is inconsistent with EIP bandwidth usage statistics on Cloud Eye:

- If the traffic does not exceed the bandwidth set for the EIP, the bandwidth is not limited and Cloud Eye collects statistics on the public network while ELB collects data on the private network.
- If the traffic exceeds the bandwidth set for the EIP, the bandwidth is limited. Traffic to the ELB system passes through a path that is different from the path in which traffic passes to the EIP.

19.32.2 What Are the Differences Between Layer-7 Status Codes and Backend Status Codes in ELB Metrics?

HTTP or HTTPS listeners terminate TCP connections. In other words, there are two TCP connections between the client and a backend server, one between the client and load balancer, and the other between the load balancer and backend server. The communication between the client and the backend server is divided into two parts. After receiving an HTTP request, the load balancer parses the request and routes the parsed request to the backend server for processing. The backend server returns a response to the load balancer after receiving the request. The load balancer then parses the response and returns the parsed response to the client. Therefore, there are two types of status codes: backend status codes returned by

the backend server to the load balancer and Layer-7 status codes returned by the load balancer to the client.

You may encounter the following situations:

- The backend server returns a status code, and the load balancer directly transmits the status code to the client. In this case, the Layer-7 status code is the same as the backend status code.
- If the connection between the load balancer and backend server is abnormal or times out, the load balancer returns HTTP 502 or 504 to the client.
- If the listener configuration or the request format or content is incorrect, the load balancer directly returns an HTTP 4xx status code or 502 to the client, and does not route the request to the backend server. In this case, there will be only a Layer-7 status code, but no backend status code.

20 Change History

Released On	Description	
2023-11-30	This issue is the fourteenth official release. Added the following section: Backend Server Group Backend Server (Dedicated Load Balancers) Backend Server (Shared Load Balancers)	
2023-09-22	This issue is the thirteenth official release. Added Quotas and Constraints Updated the following sections: • Forwarding Policy (Shared Load Balancers) • Forwarding Policy (Dedicated Load Balancers)	
2023-07-25	This issue is the twelfth official release. Added the following sections: Billing (Shared Load Balancers) Billing (Dedicated Load Balancers) Access Logging	
2023-05-05	This issue is the eleventh official release. Updated the following sections: • Load Balancer • Listener	

Released On	Description	
2022-10-31	This issue is the tenth official release. Added:	
	• Do I Need to Configure EIP Bandwidth for My Load Balancers?	
	 Why Are Requests from the Same IP Address Routed to Different Backend Servers When the Load Balancing Algorithm Is Source IP Hash? 	
	 Can Backend Servers Access the Internet Using the EIP of the Load Balancer? 	
	 Will ELB Stop Distributing Traffic Immediately After a Listener Is Deleted? 	
	 Can Multiple Load Balancers Route Requests to One Backend Server? 	
	When Will Modified Weights Take Effect?	
2022-05-30	This issue is the ninth official release, which incorporates the following changes:	
	Added descriptions and operations for dedicated load balancers in the whole document. You can select specifications when you create a load balancer.	
	Changed the name of enhanced load balancers to shared load balancers.	
	Modified the following sections:	
	Transfer Client IP Address	
	How Can I Transfer the IP Address of a Client?	
2022-04-28	This issue is the eighth official release, which incorporates the following changes:	
	Added the following section:	
	Does ELB Have Restrictions on the File Upload Speed and Size?	
2022-02-11	This issue is the seventh official release, which incorporates the following changes:	
	Added the following section:	
	Process Flowchart	
2022-01-10	This issue is the sixth official release, which incorporates the following changes:	
	Added the following section:	
	Transfer Client IP Address	
2021-11-26	This issue is the fifth official release.	
	Added migration management.	

Released On	Description
2021-10-26	 This issue is the fourth official release. Modified the following content: Deleted "Configuring the TOA Plug-in" from the appendix. Updated How Can I Transfer the IP Address of a Client?
2021-06-29	This issue is the third official release. Added the following sections: • Adding a TCP Listener • Adding a UDP Listener • Adding an HTTP Listener • HTTP/2 • HTTP Redirection to HTTPS
2019-11-27	This issue is the second official release. Added the following section: TLS Security Policy
2018-05-30	This issue is the first official release.